PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 2 Mathematics for Computing

12 - 12 - 2011

Choose four problems.

1. Find A^{-1} using Gauss-Jordan algorithm.

$$A = \left[\begin{array}{rrrr} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 1 & 1 & 2 \end{array} \right]$$

2. Solve the system using Cramer's rule.

2x	+y	-3z	= 5
x	-2y	+z	= 10
3x	+4y	-2z	= 0

3. Evaluate $\det A$.

	Γ Ο	2	1	3]
Λ	1	0	-2	2
$A \equiv$	3	-1	0	1
	$\lfloor -1$	1	2	0

4. Find the eigenvalues and eigenvectors for the matrix A.

$$\left[\begin{array}{rrrr} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{array}\right]$$

5. Compute A^{10} using the diagonalization method,

$$A = \left[\begin{array}{cc} 0 & -2 \\ 1 & 3 \end{array} \right]$$

given that $\begin{bmatrix} -2\\1 \end{bmatrix}$ and $\begin{bmatrix} -1\\1 \end{bmatrix}$ are two independent eigenvectors.

-Amin Witno