Philadelphia University
 Department of Basic Sciences

Exam 2

Mathematics for Computing

Choose four problems.

1. Find A^{-1} using Gauss-Jordan algorithm.

$$
A=\left[\begin{array}{lll}
1 & 1 & 3 \\
0 & 1 & 2 \\
1 & 1 & 2
\end{array}\right]
$$

2. Solve the system using Cramer's rule.

$$
\begin{aligned}
2 x+y-3 z & =5 \\
x-2 y+z & =10 \\
3 x+4 y-2 z & =0
\end{aligned}
$$

3. Evaluate $\operatorname{det} A$.

$$
A=\left[\begin{array}{rrrr}
0 & 2 & 1 & 3 \\
1 & 0 & -2 & 2 \\
3 & -1 & 0 & 1 \\
-1 & 1 & 2 & 0
\end{array}\right]
$$

4. Find the eigenvalues and eigenvectors for the matrix A.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 1 & 2
\end{array}\right]
$$

5. Compute A^{10} using the diagonalization method,

$$
A=\left[\begin{array}{rr}
0 & -2 \\
1 & 3
\end{array}\right]
$$

given that $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ are two independent eigenvectors.
-Amin Witno

