Philadelphia University

 Department of Basic Sciences

 Department of Basic Sciences}

Exam 1

1. (a) Evaluate the limit of this sequence.

$$
\frac{\ln 2}{\sqrt{2}}, \frac{\ln 3}{\sqrt{3}}, \frac{\ln 4}{\sqrt{4}}, \frac{\ln 5}{\sqrt{5}}, \ldots
$$

(b) Evaluate the sum of this geometric series.

$$
4+3+\frac{9}{4}+\frac{27}{16}+\frac{81}{64}+\cdots
$$

2. Use the integral test to determine convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n}
$$

3. Find the interval of convergence for the given power series.

$$
\sum_{n=1}^{\infty} \frac{(-5)^{n}}{n^{2}} x^{n}
$$

4. Use the Taylor series formula to find the Taylor series representation for

$$
f(x)=\frac{1}{(1-x)^{2}}
$$

centered at $x=0$. (DON'T find the interval of convergence.)
5. Use the Taylor series representation for $\cos x$ to approximate the value of the following definite integral using power series.

$$
\int_{0}^{1} \frac{1-\cos x}{x^{2}}
$$

