Philadelphia University

Department of Basic Sciences

1. Solve the system $\left\{\begin{array}{ll}2 x & +4 y=7 \\ 2 x & +5 y\end{array}\right\}=9$ in 3 ways:
(a) (4pt) using Gauss-Jordan algorithm.
(b) (4 pt) using matrix inverse.
(c) (4pt) using Cramer's rule.
2. (5pt) Solve the system $\left\{\begin{array}{rrrrl}A & +4 B & -2 C & +3 D & -E \\ & =5 \\ & B & +C & -2 D & -E \\ =3 \\ & & D & +E & =1\end{array}\right\}$ using Gauss-Jordan algorithm.
3. (5pt) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 4 & 2 & 1\end{array}\right]$. Compute A^{-1} (any method).
4. (6pt) Let $A=\left[\begin{array}{rrrrr}1 & 3 & 1 & 5 & 3 \\ -2 & -7 & 0 & -4 & 2 \\ 2 & 7 & 1 & 4 & -1 \\ 1 & 3 & 3 & 6 & 4 \\ -1 & -3 & 1 & 2 & 6\end{array}\right]$. Compute $\operatorname{det} A$ (any method).
5. (6pt) Let $u=(2,3,-1)$ and $v=(1,1,2)$ and $w=(-2,0,1)$. Write the vector $(7,4,-1)$ as a linear combination of u and v and w.
6. (6pt) Let $A=\left[\begin{array}{rrr}6 & 3 & -8 \\ 0 & -2 & 0 \\ 1 & 0 & -3\end{array}\right]$. Find the eigenvalues and eigenvectors of A.
