PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 2

Linear Algebra 1

02 - 01 - 2020

1. (4pt) Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 and det $A = 6$.
(a) Compute det $\begin{bmatrix} -a & 3g & d \\ -b & 3h & e \\ -c & 3i & f \end{bmatrix}$
(b) Compute det $\begin{bmatrix} d & e & f \\ a+d & b+e & c+f \\ a+3d+5g & b+3e+5h & c+3f+5i \end{bmatrix}$
(c) Compute det $(A^TA^{-1}) =$
(d) Compute det $2A^{-1} =$
2. (5pt) Compute det $\begin{bmatrix} 1 & 1 & 1 & 0 & -1 \\ 2 & 0 & 5 & 0 & 1 \\ -1 & -2 & 0 & 1 & 1 \\ 0 & 3 & 1 & 0 & 1 \\ 2 & 0 & -1 & 0 & 0 \end{bmatrix}$ using row/column expansion.
3. (5pt) Solve the system $\begin{cases} 2x & +4y & -2c & = 2 \\ x & +y & -c & = 2 \\ x & -y & = & 2 \end{cases}$ using Cramer's rule.
4. (4pt) Let $A = \begin{bmatrix} 2 & -3 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 2 \end{bmatrix}$. Compute A^{-1} using cofactors.
5. (2pt) Compute the cosine of the angle between $w = (1, 2, -1)$ and $v = (3, 2, 1)$.

 $(2p_0)$ compare the cosine of the angle set (c) (1, 2, 1) and (0, 2, 1).

–Amin Witno