Philadelphia University
 Department of Basic Sciences

Exam 2

Linear Algebra 1

1. (4pt) Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $\operatorname{det} A=6$.
(a) Compute $\operatorname{det}\left[\begin{array}{lll}-a & 3 g & d \\ -b & 3 h & e \\ -c & 3 i & f\end{array}\right]$
(b) Compute det $\left[\begin{array}{ccc}d & e & f \\ a+d & b+e & c+f \\ a+3 d+5 g & b+3 e+5 h & c+3 f+5 i\end{array}\right]$
(c) Compute $\operatorname{det}\left(A^{T} A^{-1}\right)=$
(d) Compute $\operatorname{det} 2 A^{-1}=$
2. (5pt) Compute det $\left[\begin{array}{rrrrr}1 & 1 & 1 & 0 & -1 \\ 2 & 0 & 5 & 0 & 1 \\ -1 & -2 & 0 & 1 & 1 \\ 0 & 3 & 1 & 0 & 1 \\ 2 & 0 & -1 & 0 & 0\end{array}\right]$ using row/column expansion.
3. (5pt) Solve the system $\left\{\begin{array}{clll}2 x & +4 y & -2 c & =2 \\ x & +y & -c & =2 \\ x & -y & & =2\end{array}\right\}$ using Cramer's rule.
4. (4pt) Let $A=\left[\begin{array}{rrr}2 & -3 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 2\end{array}\right]$. Compute A^{-1} using cofactors.
5. (2pt) Compute the cosine of the angle between $w=(1,2,-1)$ and $v=(3,2,1)$.
