Philadelphia University

Department of Basic Sciences

Final Exam

Linear Algebra
01-02-2015

1. Solve the system of linear equations using Cramer's rule.

$$
\left\{\begin{aligned}
2 x-4 y & =13 \\
x+3 y & =-6
\end{aligned}\right.
$$

2. Find A^{-1}.

$$
A=\left[\begin{array}{rrr}
-1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

3. Evaluate $\operatorname{det} A$.

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -1 & 2 \\
-2 & 1 & 0 & 1 \\
1 & -1 & 2 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

4. Write the vector $(1,2)$ as a linear combination of $(2,1)$ and $(6,5)$.
5. Given the old basis $\{(5,0),(2,1)\}$ and the new basis $\{(2,4),(1,3)\}$ for R^{2} : (a) Find the matrix of transition. (b) Find the new coordinates for $(0,10)$ after the transformation.
6. Find the new equation of the line $y=2 x-1$ under the linear transformation given by $T(x, y)=(x+4 y, 2 x+9 y)$.
7. Find the eigenvalues and eigenvectors of the matrix A.

$$
A=\left[\begin{array}{rrr}
5 & 0 & 0 \\
1 & 3 & -2 \\
1 & -2 & 3
\end{array}\right]
$$

8. The matrix A has eigenvalues $k=1$ and $k=2$. Compute A^{10} using the diagonalization method.

$$
A=\left[\begin{array}{rr}
0 & 2 \\
-1 & 3
\end{array}\right]
$$

