PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 2

Linear Algebra

21 - 12 - 2014

- 1. Let v = (5, -3, 1) and w = (6, 9, -3).
 - (a) Compute the length of v.
 - (b) Compute the length of w.
 - (c) Compute the distance between v and w.
 - (d) Compute the angle between v and w.
- 2. For the matrix A:

 $A = \left[\begin{array}{rrrr} 1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16 \\ 0 & 1 & 0 & 2 \end{array} \right]$

- (a) Find a basis for the solution space of A.
- (b) Find a basis for the column space of A.
- 3. Consider the vectors in $\{(1, 1, 1), (1, 2, 3), (1, 4, 9)\}$.
 - (a) Do they span or not span R^3 ?
 - (b) Are they linearly dependent or independent?
 - (c) Do they form a basis for R^3 ?
- 4. Given the old basis $\{(0,2), (2,0)\}$ and the new basis $\{(1,1), (-1,1)\}$ for \mathbb{R}^2 :
 - (a) Find the matrix of transition from the old to the new basis.
 - (b) Find the new coordinates of the old point (3, 5).
 - (c) Find the old coordinates of the new point (2, 2).
- 5. Change the basis $\{(2, 2, 1), (-2, 1, 2), (2, 0, 0)\}$ for \mathbb{R}^3 to an orthonormal basis using the Gram-Schmidt process. Hint: recall the formula

new
$$v_3 = v_3 - (v_3 \cdot v_1)v_1 - (v_3 \cdot v_2)v_2$$