Philadelphia University
 Department of Basic Sciences

Exam 2

Linear Algebra

1. Let $v=(5,-3,1)$ and $w=(6,9,-3)$.
(a) Compute the length of v.
(b) Compute the length of w.
(c) Compute the distance between v and w.
(d) Compute the angle between v and w.
2. For the matrix A :

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 2 & 4 \\
3 & 8 & 6 & 16 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

(a) Find a basis for the solution space of A.
(b) Find a basis for the column space of A.
3. Consider the vectors in $\{(1,1,1),(1,2,3),(1,4,9)\}$.
(a) Do they span or not span R^{3} ?
(b) Are they linearly dependent or independent?
(c) Do they form a basis for R^{3} ?
4. Given the old basis $\{(0,2),(2,0)\}$ and the new basis $\{(1,1),(-1,1)\}$ for R^{2} :
(a) Find the matrix of transition from the old to the new basis.
(b) Find the new coordinates of the old point $(3,5)$.
(c) Find the old coordinates of the new point $(2,2)$.
5. Change the basis $\{(2,2,1),(-2,1,2),(2,0,0)\}$ for R^{3} to an orthonormal basis using the Gram-Schmidt process. Hint: recall the formula

$$
\text { new } v_{3}=v_{3}-\left(v_{3} \cdot v_{1}\right) v_{1}-\left(v_{3} \cdot v_{2}\right) v_{2}
$$

