PHILADELPHIA UNIVERSITY

FACULTY OF SCIENCE
DEPARTMENT OF BASIC SCIENCES

Linear Algebra

Final Exam: 15-6-2004
Dr. Sabah Ahmad
Dr. Amin Witno

1. (8 points)

Solve the following system of linear equations using Cramer's rule.

$$
\begin{gathered}
x+2 y+z=6 \\
x-4 y-z=-11 \\
3 x-2 y+z=0
\end{gathered}
$$

2. (8 points)

Use Gram-Schmidt process to find an orthonormal basis for R^{3} from the basis $\left\{\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right),\left(\frac{-1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right)\right\}$.
3. (16 points)

Let $T: R^{3} \rightarrow R^{3}$ be the linear operator defined by $T(x, y, z)=(2 x+y-z, 2 y+z,-3 y-2 z)$.
a) (6 points) Is T one-to-one? If so find $T^{-1}(x, y, z)$.
b) (8 points) Find the eigenvalues and eigenvectors of T.
c) (2 points) For each eigenvectors find the rank and nullity.
4. (10 points)

Let $A=\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]$. Compute A^{100} using diagonalization.
5. (8 points)

Let $B_{1}=\{(2,7),(-1,-2)\}$ and $B_{2}=\{(1,2),(3,5)\}$ be two bases for R^{2}.
a) (4 points) Find the matrix of transition from B_{1} to B_{2}.
b) (4 points) Find the matrix of transition from B_{2} to B_{1}.

