Linear Algebra
Dr. Sabah Ahmad
Dr. Amin Witno
Final Exam
26-1-2004

1. Let F: R3 to R3 be a linear operator defined by

$$
F(x, y, z)=(2 x-2 y, 3 y, 3 z)
$$

1) Find the eigenvalues and eigenvectors of the linear operator matrix
2) For each eigenvalue find the rank of the matrix lambda I - A
3) Compute $A^{\wedge} 10$ and $A^{\wedge}(-10)$
2. Find all values of a, b, c for which A is symmetric

$$
\mathrm{A}=\begin{array}{ccc}
2 & \mathrm{a}-2 \mathrm{~b}+2 \mathrm{c} & 2 \mathrm{a}+\mathrm{b}+\mathrm{c} \\
3 & 5 & \mathrm{a}+\mathrm{c} \\
0 & -2 & 7
\end{array}
$$

3. Use Gram-Schmidt process to transform the basis

$$
\mathrm{u} 1=(1,0,0), \mathrm{u} 2=(3,7,-2), \mathrm{u} 3=(0,4,1)
$$

into orthonormal basis
4. Consider these sets of vectors in R3

$$
\begin{aligned}
& \mathrm{A}=\{(3,6,1),(-1,-2,7),(2,4,8)\} \\
& \mathrm{B}=\{(2,1,1),(4,2,3),(1,3,0)\} \\
& \mathrm{C}=\{(15,0,-1),(1,7,4)\} \\
& \mathrm{D}=\{(1,3,3),(0,1,4),(5,6,3),(7,2,-1)\} \\
& \mathrm{E}=\{(3,-1,2),(6,-2,4),(1,5,3),(2,10,6)\}
\end{aligned}
$$

1) Which sets are linearly independent ?
2) Which sets span R3 ?
3) Which sets form a basis for R3 ?
