Department of Basic Sciences - Philadelphia University

Final Exam

1. (3 points) Given the transition matrix $P_{A \rightarrow B}=\left[\begin{array}{cc}3 & 7 \\ -2 & -5\end{array}\right]$ and $P_{B \rightarrow C}=\left[\begin{array}{ll}4 & 3 \\ 2 & 2\end{array}\right]$. Find the transition matrix $P_{C \rightarrow A}$
2. (4 points) Given $p=x^{2}$ and $q=x^{2}+x-1 \in P_{2}$ with the integral inner product $\langle p, q\rangle=\int_{0}^{1} p q d x$.
Part (a) Find $d(p, q)$
Part (b) Find $\operatorname{proj}_{p}(q)$
3. (5 points) Find (a) the rank (b) basis for Column Space (c) LDE for the matrix

$$
A=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 2 & 1 & 1 & 2 \\
2 & 2 & 4 & 3 & 2 & 3
\end{array}\right]
$$

4. (3 points) Given $\langle v, w\rangle=6$ and $\|v\|=5$ and $\|w\|=3$, find $\langle 2 v+w, v-2 w\rangle$
5. (4 points) Given $w=(12,-4)$ and the basis $B=\{(1,2),(1,-2)\}$ for R^{2}
(a) Prove that B is orthonormal using the inner product $\langle v, w\rangle=\frac{1}{2} v_{1} w_{1}+\frac{1}{8} v_{2} w_{2}$

Part (b) Find $[w]_{B}$ using inner product
6. (4 points) Find all the eigenvalues (only eigenvalues) of $A=\left[\begin{array}{ccc}2 & 4 & 0 \\ 11 & -5 & 7 \\ 0 & 0 & 8\end{array}\right]$
7. (4 points) Given the eigenvalue $k=2$ for A, find basis for the eigenspace

$$
A=\left[\begin{array}{cccc}
16 & 0 & 16 & 0 \\
20 & 8 & 4 & 0 \\
6 & 0 & 6 & 20 \\
1 & 0 & 1 & 3
\end{array}\right]
$$

8. (5 points) Compute A^{6} using diagonalization, using the given P.

$$
A=\left[\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right] ; \quad P=\left[\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right]
$$

9. (3 points) Let $S=\left\{A \in M_{2,2} \mid \operatorname{det} A \geq 0\right\}$

Prove S is a subspace or not a subspace of $M_{2,2}$
10. (4 points) Transform the set $\{(1,0,2),(2,0,0)\}$ to orthonormal set using the inner product $\langle v, w\rangle=3 v_{1} w_{1}+2 v_{2} w_{2}+v_{3} w_{3}$

