Department of Basic Sciences - Philadelphia University

Mid Exam

Linear Algebra 2
15-12-2021

1. (3 points) Given the vectors $\left\{1-x+2 x^{2}, 3 x-x^{2}, 2+x-x^{2}, 1+2 x^{2}\right\}$
(a) Do they span or not span P_{2} ?
(b) Are they linearly dependent (LD) or independent (LI)?
(c) Are they a basis for P_{2} ?
2. (4 points) Find $P_{C \rightarrow A}$ given $P_{A \rightarrow B}=\left[\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right]$ and $P_{B \rightarrow C}=\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]$
3. (4 points) Given $[v]_{B}=(2,0,-1)$, find $[v]_{C}$ using the transition matrix

$$
P_{A \rightarrow C}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -1 \\
4 & 1 & 1
\end{array}\right] \quad \text { and } \quad P_{B \rightarrow A}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
4 & -1 & 1 \\
3 & 1 & 2
\end{array}\right]
$$

4. (4 points) Let $T(x, y, z)=(3 x-y+z, 2 x+2 y, x-y-z)$ and $S(x, y, z)=$ $(x+y+2 z, 2 x+y+3 z, y-z)$. Find the transformation $T(S(x, y, z))$ using matrix multiplication.
5. (3 points) Let $T(x, y)=(3 x-4 y, x+2 y)$. Find the inverse transformation $T^{-1}(x, y)$.
6. (4 points) Given two basis for $R^{3}: B=\{(1,0,1),(0,1,1),(1,1,1)\}$ and $C=\{(2,3,4),(-1,-1,2),(3,2,0)\}$, find $P_{C \rightarrow B}$
7. (4 points) Let $S=\left\{c x^{2}+c x^{4} \in P_{4} \mid c \in \mathbb{R}\right\}$. Prove S is a subspace or not a subspace of P_{4}
8. (4 points) Find the nullity and a basis for the Null Space of $A=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$
