Philadelphia University

Department of Basic Sciences

Final Exam

Linear Algebra 2

1. This problem has 4 parts.
(a) (2 points) Let \mathbb{R}^{2} have the weighted Euclidean inner product $\langle\mathbf{u}, \mathbf{v}\rangle=$ $3 u_{1} v_{1}+5 u_{2} v_{2}$. If $\mathbf{u}=(1,-2)$ and $\mathbf{v}=(3, k)$ are orthogonal vectors, find the value of k.
(b) (3 points) Let $\langle\mathbf{u}, \mathbf{v}\rangle=2$ and $\langle\mathbf{v}, \mathbf{w}\rangle=-3$ and $\langle\mathbf{u}, \mathbf{w}\rangle=-1$ and $\|\mathbf{w}\|=4$. Compute $\langle 2 \mathbf{v}-\mathbf{w}, 3 \mathbf{u}+2 \mathbf{w}\rangle$.
(c) (2 points) Compute the cosine of the angle between $A=\left[\begin{array}{rr}3 & -2 \\ 4 & 8\end{array}\right]$ and $B=\left[\begin{array}{rr}-1 & 3 \\ 1 & 1\end{array}\right]$ using the standard inner product on $M_{2,2}$.
(d) (3 points) Let $p=e^{x}$ and $q=3-e^{x} \in C[0,1]$ with the integral inner product $\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x$. Compute $d(p, q)$.
2. (7 points) Let $p=3+7 x+23 x^{2} \in P_{2}$. Find the coordinate $[p]_{B}$ relative to the basis $B=\left\{1+3 x+7 x^{2}, 2+7 x+4 x^{2}, 2+6 x+5 x^{2}\right\}$ for P_{2}.
3. (7 points) The matrix $A=\left[\begin{array}{rrrr}7 & 4 & -6 & -8 \\ -2 & 10 & -3 & 4 \\ -4 & 5 & 0 & -4 \\ 0 & 1 & -1 & 5\end{array}\right]$ has eigenvalue $\lambda=9$. Find a basis for the eigenspace.
4. (7 points) The matrix $P=\left[\begin{array}{rr}-1 & -1 \\ 1 & 5\end{array}\right]$ diagonalizes the matrix $A=\left[\begin{array}{rr}4 & 1 \\ -5 & -2\end{array}\right]$. Use the formula $P^{-1} A P=D$ to compute A^{7}.
5. This problem has 2 parts.
(a) (6 points) Determine if the matrix $\left[\begin{array}{rr}-1 & 3 \\ 0 & 0\end{array}\right]$ is similar or not similar to the matrix $\left[\begin{array}{rr}-1 & -3 \\ 0 & 0\end{array}\right]$.
(b) (3 points) Prove that if the matrix A is similar to matrix B, then A^{2} is similar to B^{2}.
