PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Exam 2

Linear Algebra 2

24 - 04 - 2019

Choose 6 problems out of 7.

- 1. (3 points) Given two bases $B = \{(3, -1), (2, 5)\}$ and $B' = \{(-2, 4), (1, -3)\}$ for \mathbb{R}^2 , find the transition matrix from *B* to *B'*.
- 2. (3 points) Find the standard matrix for the transformation in \mathbb{R}^2 performed by reflection about the line y = x, followed by rotation of 90°, and then followed by reflection about the x-axis.
- 3. (3 points) Find the inverse of the linear operator T(x, y, z) = (x+y, x-z, x+y+z) if exists.

4. (3 points) Find all the eigenvalues of the matrix $A = \begin{bmatrix} 6 & 3 & -8 \\ 0 & -2 & 0 \\ 1 & 0 & -3 \end{bmatrix}$.

5. (3 points) The matrix $A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ has eigenvalues $\lambda = 1$ and $\lambda = 5$.

For each eigenvalue, find a basis for the eigenspace.

- 6. (5 points) Find a basis for the (a) row space (b) column space (c) null space of the matrix $A = \begin{bmatrix} 1 & -2 & 2 & 3 & 1 \\ -3 & 6 & -1 & 1 & -7 \\ 2 & -4 & 5 & 8 & 0 \\ 0 & 0 & -1 & -2 & 2 \end{bmatrix}$ and (d) find the rank and nullity.
- 7. (5 points) Prove that a linear transformation $T: V \to W$ is one-to-one if and only if $\ker(T) = \{\mathbf{0}\}.$

-Amin Witno