Philadelphia University

Department of Basic Sciences

Exam 2

Choose 6 problems out of 7 .

1. (3 points) Given two bases $B=\{(3,-1),(2,5)\}$ and $B^{\prime}=\{(-2,4),(1,-3)\}$ for \mathbb{R}^{2}, find the transition matrix from B to B^{\prime}.
2. (3 points) Find the standard matrix for the transformation in \mathbb{R}^{2} performed by reflection about the line $y=x$, followed by rotation of 90°, and then followed by reflection about the x-axis.
3. (3 points) Find the inverse of the linear operator $T(x, y, z)=(x+y, x-z, x+y+z)$ if exists.
4. (3 points) Find all the eigenvalues of the matrix $A=\left[\begin{array}{rrr}6 & 3 & -8 \\ 0 & -2 & 0 \\ 1 & 0 & -3\end{array}\right]$.
5. (3 points) The matrix $A=\left[\begin{array}{rrr}3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5\end{array}\right]$ has eigenvalues $\lambda=1$ and $\lambda=5$. For each eigenvalue, find a basis for the eigenspace.
6. (5 points) Find a basis for the (a) row space (b) column space (c) null space of the matrix $A=\left[\begin{array}{rrrrr}1 & -2 & 2 & 3 & 1 \\ -3 & 6 & -1 & 1 & -7 \\ 2 & -4 & 5 & 8 & 0 \\ 0 & 0 & -1 & -2 & 2\end{array}\right]$ and (d) find the rank and nullity.
7. (5 points) Prove that a linear transformation $T: V \rightarrow W$ is one-to-one if and only if $\operatorname{ker}(T)=\{\mathbf{0}\}$.
