# Philadelphia University 

## Department of Basic Sciences

## Exam 1

## Linear Algebra 2

Choose 5 problems out of 6 and give complete solutions. No bonus.

1. Let $W=\left\{A \in M_{2 \times 2} \mid \operatorname{det} A=0\right\}$. Prove $W$ is or is not a subspace of $M_{2 \times 2}$.
2. Prove that the Wronskian of $\left\{e^{x}, e^{2 x}, e^{3 x}\right\}$ is $W(x)=2 e^{6 x}$, and then explain why this set is linearly dependent or why independent in $F(-\infty, \infty)$.
3. Find all the values of $k \in \mathbb{R}$ such that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ span $\mathbb{R}^{3}$, where

$$
\begin{aligned}
\mathbf{u} & =\left(\frac{1}{2},-\frac{1}{2}, 1\right) \\
\mathbf{v} & =(1, k, 1) \\
\mathbf{w} & =(k, 1,3)
\end{aligned}
$$

4. Prove that $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ is linearly dependent in $P_{3}$ by writing one of these polynomials as a linear combination of the others, where

$$
\begin{aligned}
& p_{1}=1-x+x^{2}+x^{3} \\
& p_{2}=1-x^{3} \\
& p_{3}=-2 x+4 x^{2}+3 x^{3} \\
& p_{4}=x+x^{2}-3 x^{3}
\end{aligned}
$$

5. Find the dimension and a basis for the given vector space.
(a) The plane in $\mathbb{R}^{3}$ given by the equation $2 x+3 y=0$.
(b) The subspace of all $2 \times 2$ symmetric matrices with real entries.
(c) The solution space of the linear system $A \mathbf{x}=\mathbf{0}$, where

$$
A=\left[\begin{array}{rrrrr}
1 & 1 & 2 & -3 & 5 \\
0 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 3 & 3
\end{array}\right]
$$

6. Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis for a vector space $V$, and let

$$
\begin{aligned}
& w_{1}=v_{1}-v_{3} \\
& w_{2}=3 v_{1}+2 v_{2} \\
& w_{3}=v_{1}+v_{2}+v_{3}
\end{aligned}
$$

Prove that $\left\{w_{1}, w_{2}, w_{3}\right\}$ is also a basis for $V$.

