Philadelphia University
 Department of Basic Sciences

Final Exam

Linear Algebra 2

04-02-2014

Solutions must be complete in order to receive full credit.

1. (5 pts) Write the matrix A as the product of elementary matrices.

$$
A=\left[\begin{array}{rrr}
1 & 0 & -2 \\
5 & 0 & -9 \\
0 & 2 & 0
\end{array}\right]
$$

2. (5 pts) Evaluate $\operatorname{det} A$ by cofactor expansion along the second column.

$$
A=\left[\begin{array}{rrrr}
1 & 0 & -1 & 5 \\
1 & 2 & 0 & 3 \\
4 & 1 & -2 & 0 \\
-1 & 0 & -3 & 1
\end{array}\right]
$$

3. (5 pts) Write the vector $v=(9,3,-1)$ as a linear combination of v_{1}, v_{2}, v_{3}.

$$
\begin{aligned}
& v_{1}=(1,1,-1) \\
& v_{2}=(0,2,1) \\
& v_{3}=(2,1,3)
\end{aligned}
$$

4. (5 pts) Find a basis for the nullspace of the matrix A.

$$
A=\left[\begin{array}{rrrrrrr}
1 & 2 & -1 & 1 & 1 & 2 & 4 \\
0 & 0 & 1 & -1 & 3 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

5. (10 pts) Solve the system of differential equations using the diagonalization method.

$$
\left\{\begin{array}{lr}
x^{\prime}= & x+ \\
y^{\prime}= & y+ \\
z^{\prime}= & 2 y+2 z \\
2 z \\
3 z
\end{array}\right.
$$

6. (10 pts) Solve the system of differential equations $X^{\prime}=A X$ using matrix exponential by writing $A=B+C$ such that $B C=C B$.

$$
A=\left[\begin{array}{ll}
2 & 0 \\
2 & 3
\end{array}\right]
$$

