Philadelphia University
 Department of Basic Sciences

Exam 2

Linear Algebra 2
30-12-2013

Solutions must be complete in order to receive full credit.

1. (2 pts) Let $S=\{(x, y, x+y) \mid x, y \in R\}$. Is S a subspace of R^{3} ? Why?
2. (3 pts) Let $T: R^{4} \rightarrow R^{6}$ be given by

$$
T(x, y, z, w)=(x+y, y, x, z+w, z, w)
$$

(a) What is the matrix of the linear transformation T ?
(b) What is the rank of T ?
(c) What is the nullity of T ?
3. (3 pts) Find the matrix of transition for the change of basis from the old basis $\{(1,1),(2,0)\}$ to the new $\{(0,3),(2,1)\}$ for R^{2}.
4. (3 pts) Find all the eigenvalues of the matrix A, given that one of them is $k=3$.

$$
A=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

5. (3 pts) Find the eigenvectors of the matrix A which correspond to the eigenvalue $k=2$.

$$
A=\left[\begin{array}{rrrr}
2 & 1 & 1 & -3 \\
0 & 2 & 0 & 4 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

6. (6 pts) Evaluate A^{10} by diagonalizing the matrix A, given that the eigenvalues are $k=0$ and $k=4$.

$$
A=\left[\begin{array}{rr}
2 & -1 \\
-4 & 2
\end{array}\right]
$$

