Philadelphia University
 Department of Basic Sciences

Exam 1

Linear Algebra 2

1. (1 pt) Find the elementary matrix E such that

$$
E\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
5 & 7 & 9 \\
7 & 8 & 9
\end{array}\right]
$$

2. (2 pts) Evaluate $\operatorname{det} A$.

$$
A=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 5 \\
0 & 0 & 0 & 4 & 0 \\
0 & 2 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0
\end{array}\right]
$$

3. (3 pts) Write $(3,5)$ as a linear combination of $(1,4)$ and $(2,6)$, if possible.
4. (3 pts) Determine if these vectors are linearly dependent or independent in R^{4}.

$$
\{(1,0,1,0),(1,1,0,0),(0,1,0,1),(0,0,1,1)\}
$$

5. (5 pts) Write the matrix A as the product of elementary matrices.

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 3 \\
0 & 0 & 5
\end{array}\right]
$$

6. (6 pts) Solve the system of equations using Gauss-Jordan algorithm.

$$
\left\{\begin{aligned}
5 x+y-z+3 w & =0 \\
+y-2 z-w & =3 \\
x-y+2 z+w & =-1
\end{aligned}\right.
$$

