Philadelphia University

Department of Basic Sciences

Final Exam

Linear Algebra 2

Each problem is worth 8 points. Two points extra for turning your mobile phone off.

1. Let $A \in M_{n \times n}(F)$.
(a) Let c be an eigenvalue of A. Prove that the set of all eigenvectors of A corresponding to the eigenvalue c is a subspace of F^{n}.
(b) Suppose $\operatorname{det} A \neq 0$. Prove that the matrix $A B$ is similar to $B A$ for all $B \in M_{n \times n}(F)$.
2. Let $A=\left[\begin{array}{lll}2 & 0 & 2 \\ 0 & 3 & 1 \\ 3 & 1 & 3\end{array}\right]$
(a) Write A as a product of elementary matrices $E_{1}, E_{2}, \ldots, E_{n}$.
(b) Evaluate $\operatorname{det} A$ by computing $\operatorname{det} E_{1}, \operatorname{det} E_{2}, \ldots, \operatorname{det} E_{n}$.
3. Let $T(x, y)=(2 x+y, x+2 y)$ be a linear operator on R^{2}.
(a) Find the matrix of T with respect to the basis $\{(2,1),(3,2)\}$.
(b) Find a basis B^{\prime} of R^{2} such that the matrix of T with respect to B^{\prime} is diagonal.
4. Suppose the matrix A is diagonalizable such that $P^{-1} A P=D$ where

$$
P=\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & -1 & 0 \\
0 & 1 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(a) Compute A^{10}.
(b) Solve the system of differential equations $Y^{\prime}=A Y$.
5. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 2\end{array}\right]$.
(a) Find the characteristic polynomial of the matrix A.
(b) Verify the Cayley-Hamilton Theorem for the matrix A.
(c) Prove that A is not diagonalizable.
6. Let A be the same matrix in Problem (5).
(a) Write $A=B+C$ such that $B C=C B$.
(b) Use the result to evaluate the matrix exponential e^{A}.
(c) Solve the system of differential equations $Y^{\prime}=A Y$.
-Amin Witno

