PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam

Linear Algebra 2

15 - 6 - 2006

Each problem is worth 8 points. Two points extra for turning your mobile phone off.

- 1. Let $A \in M_{n \times n}(F)$.
 - (a) Let c be an eigenvalue of A. Prove that the set of all eigenvectors of A corresponding to the eigenvalue c is a subspace of F^n .
 - (b) Suppose det $A \neq 0$. Prove that the matrix AB is similar to BA for all $B \in M_{n \times n}(F)$.
- 2. Let $A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 3 & 1 \\ 3 & 1 & 3 \end{bmatrix}$
 - (a) Write A as a product of elementary matrices E_1, E_2, \ldots, E_n .
 - (b) Evaluate det A by computing det E_1 , det E_2 , ..., det E_n .
- 3. Let T(x,y) = (2x + y, x + 2y) be a linear operator on \mathbb{R}^2 .
 - (a) Find the matrix of T with respect to the basis $\{(2,1), (3,2)\}$.
 - (b) Find a basis B' of R^2 such that the matrix of T with respect to B' is diagonal.
- 4. Suppose the matrix A is diagonalizable such that $P^{-1}AP = D$ where

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

- (a) Compute A^{10} .
- (b) Solve the system of differential equations Y' = AY.

5. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
.

- (a) Find the characteristic polynomial of the matrix A.
- (b) Verify the Cayley-Hamilton Theorem for the matrix A.
- (c) Prove that A is not diagonalizable.
- 6. Let A be the same matrix in Problem (5).
 - (a) Write A = B + C such that BC = CB.
 - (b) Use the result to evaluate the matrix exponential e^A .
 - (c) Solve the system of differential equations Y' = AY.

-Amin Witno