Philadelphia University
 Department of Basic Sciences

Linear Algebra II [Exam 1] 6-4-2006

Each problem is worth 4 points.

1. Is W a subspace of V ?
(a) $V=\mathbf{R}^{2}$ and $W=\{(a-b, a b) \mid a, b \in \mathbf{R}\}$
(b) $V=M_{2 \times 2}(\mathbf{R})$ and $W=\left\{\left.\left(\begin{array}{ll}0 & b \\ c & 0\end{array}\right) \right\rvert\, b, c \in \mathbf{R}\right\}$
2. Does S span V ? Is S linearly independent? Is S a basis for V ?
(a) $V=\mathbf{R}^{3}$ and $S=\{(1,2,1),(2,0,0)\}$
(b) $V=\mathbf{R}^{2}$ and $S=\{(1,3),(-2,4),(-2,-6),(3,-6)\}$
3. Is $T: V \rightarrow W$ linear?
(a) $V=W=\mathbf{R}^{3}$ and $T(x, y, z)=(x-y, 1, y+z)$
(b) $V=M_{2 \times 2}(\mathbf{R}), W=\mathbf{R}$, and $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c$
4. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be a linear transformation given by $T(x, y, z)=(x-y, 2 z)$.
(a) Find $N(T)$ and $R(T)$.
(b) Is T one-to-one?
(c) Verify that nullity $(T)+\operatorname{rank}(T)=\operatorname{dimension}(V)$.
5. Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ is a linear transformation such that $T(2,3)=(1,0,2)$ and $T(6,-1)=(3,-2,4)$.
(a) Find $T(2,8)$.
(b) Find the matrix of T with respect to the bases $\{(2,3),(6,-1)\}$ for \mathbf{R}^{2} and $\{(1,0,0),(0,-1,0),(0,0,2)\}$ for \mathbf{R}^{3}.
-Amin Witno-
