Department of Basic Sciences — Philadelphia University

Mid ExamGraph Theory28–11–2021

There are (5) pages and (16) questions.

- 1. (1 point) If G is an 8-regular graph with 64 edges, then find $|V_G|$.
- 2. (1 point) If the graph G has degree sequence (5, 4, 4, 3, 3, 2, 2, 1), then find $|E_G|$.
- 3. (1 point) Find all the values of n such that $C_n \subseteq K_{3,3}$.
- 4. (1 point) If degree sequence of G is (9, 8, 8, 6, 5, 5, 4, 3, 3, 1), find the degree sequence of \overline{G} .
- 5. (1 point) If the graph G is self-complementary with 16 vertices, then find $|E_G|$.
- 6. (1 point) Given the incidence matrix Z of a graph, find the adjacency matrix A.

	1	1	0	1	0	1
	0	1	0	0	1	
Z =	0	0	0	1	1	
	1	0	1	0	0	
	0	0	1	0	0	

7. (1 point) Given 2 isomorphic graphs below with adjacency matrices A and B. Find a permutation matrix P (without proof) such that $PAP^T = B$.

- 8. (1 point) Find $\deg(\overline{P_8})$.
- 9. (2 points) Apply the Degree Sequence Algorithm for the sequence (6, 5, 4, 4, 3, 2, 2, 1, 1) and determine graphical or not graphical.
- 10. (2 points) Draw 2 examples of a tree with degree sequence (4, 2, 2, 1, 1, 1, 1) such that the first example is not isomorphic to the second example (without proof).
- 11. (3 points) The weight matrix W is given. (a) Draw the graph then (b) Find the total weight of the Minimal Spanning Tree.

	0	8	0	7	3	0
W =	8	0	10	6	0	9
	0	10	0	5	4	0
	7	6	5	0	0	0
	3	0	4	0	0	10
	0	9	0	0	10	0

12. (3 points) (a) Draw the Minimal Spanning Tree using Prim algorithm starting at vertex v_1 then (b) Find the MST sequence.

- 13. (2 points) Prove: If G is a disconnected graph with 8 vertices and 15 edges, then \overline{G} is cyclic.
- 14. (3 points) Draw the BFS spanning trees starting at vertex 1, and find the BFS sequence.

- 15. (3 points) Repeat Problem (14) using DFS, starting at vertex 1.
- 16. (4 points) Use cofactor to count the number of labeled spanning trees of G.

-Amin Witno