Department of Basic Sciences - Philadelphia University

Exam 1

Part I. Short Answer (1 point each)

1. If the graph G is 4 -regular with 16 edges, then find $\left|V_{G}\right|$.
2. Prove the sequence $(5,4,4,3,3,2,2,1)$ is graphical or not graphical.
3. Find all values of n such that $C_{n} \subseteq \overline{K_{4,4}}$.
4. If the graph G is self-complementary with 16 vertices, then find $\left|E_{G}\right|$.
5. Given the incidence matrix Z of a graph, find the adjacency matrix A.

$$
Z=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right] \quad \rightarrow \quad A=
$$

6. The two graphs below are isomorphic with adjacency matrices A and B. Find a permutation matrix P (without proof) such that $P A P^{T}=B$.

7. The degree sequence of G is $(9,8,8,6,5,5,4,3,3,1)$. Determine the number of leaves in \bar{G}.
8. Draw two non-isomorphic trees with the same degree sequence $(4,2,2,1,1,1,1)$.

Part II. (4 points each) Write complete solution.
9. Draw the rooted and unrooted spanning trees of the labeled graph using (a) Breadth-First Search starting at vertex 1, and (b) rooted and unrooted spanning trees using Depth-First Search algorithms starting at vertex 1.

10. Apply (a) Prim's algorithm (v_{1} is given) and (b) Kruskal's algorithm to produce a minimal spanning tree for the weighted graph and (c) compute its total value.

(a)
\circ
v_{1}
(b)

○
0
0
0
○
\circ
11. Use the matrix tree algorithm to determine the number of labeled spanning trees of the graph.

