PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Module:	Modern Euclidean Geometry	Paper:	Exam 2
Instructor:	Amin Witno	Date:	8 May 2005

Problems 1 to 6: Circle the best choice.

1. Euclidean Geometry and Hyperbolic Geometry use the same set of axioms, except the Parallelism Axiom.
(a) True
(b) False
2. All 5 of Euclid's Postulates can be proved in Neutral Geometry.
(a) True
(b) False
3. Hilbert Parallelism Axiom and Euclid's Parallel Postulate are equivalent.
(a) True
(b) False
4. Which is not a criterion for congruence between 2 triangles?
(a) ASA
(b) SSS
(c) AAA
(d) SAA
(e) SAS
5. Given a line I and a point P not on I. Which statement cannot be proved in Neutral Geometry?
(a) There exists a line through P perpendicular to I.
(b) There exists a unique line through P perpendicular to I.
(c) There exists at least one line through P parallel to I.
(d) There exists a unique line through P parallel to I .
6. "The angle sum of any triangle is ≤ 180 degree." This theorem is
(a) not true in Euclidean Geometry
(b) not true in Hyperbolic Geometry
(c) not true in Elliptic Geometry
(d) true in Neutral Geometry only

Problems 7 to 10: Give the definitions.
7. segment $A B$ < segment $C D$
8. $\angle \mathrm{BAC} \leq \angle \mathrm{EDF}$
9. a point P is inside a circle
10. ray $A D$ is between ray $A B$ and ray $A C$

Problems 11 to 14: Write the propositions in detail.
11. Segment Subtraction
12. ASA Criterion
13. Angle Ordering
14. Every angle has a unique bisector

Problem 15: Fill in the blank with the right reasoning.
Given $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$. If $\angle \mathrm{A} \approx \angle \mathrm{D}$ and $\angle \mathrm{C} \approx \angle \mathrm{F}$ and $\mathrm{AC} \approx \mathrm{DF}$ then $\triangle \mathrm{ABC} \approx \triangle \mathrm{DEF}$. Proof.

1. There is a unique point G on the ray $D E$ such that $D G \approx A B$ (\qquad
2. $\triangle \mathrm{ABC} \approx \triangle \mathrm{DGF}($ \qquad _)
3. $\angle \mathrm{DFG} \approx \angle \mathrm{C}$
4. \quad ray $\mathrm{FE}=$ ray $\mathrm{FG}($ \qquad
5. $G=E$
6. $\triangle \mathrm{ABC} \approx \triangle \mathrm{DEF}$

Problem 16: Prove the following proposition.
Given $\triangle A B C, \angle B \approx \angle C$ if and only if $A B \approx A C$.

