PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Module:	Modern Euclidean Geometry	Paper:	Exam 2	
Instructor:	Amin Witno	Date:	8 May 2005	

Problems 1 to 6: Circle the best choice.

- Euclidean Geometry and Hyperbolic Geometry use the same set of axioms, except the Parallelism Axiom.
 (a) True (b) False
- All 5 of Euclid's Postulates can be proved in Neutral Geometry.
 (a) True (b) False
- Hilbert Parallelism Axiom and Euclid's Parallel Postulate are equivalent.
 (a) True (b) False
- 4. Which is not a criterion for congruence between 2 triangles?
 - (a) ASA
 - (b) SSS
 - (c) AAA
 - (d) SAA
 - (e) SAS
- 5. Given a line I and a point P not on I. Which statement cannot be proved in Neutral Geometry?
 - (a) There exists a line through P perpendicular to I.
 - (b) There exists a unique line through P perpendicular to I.
 - (c) There exists at least one line through P parallel to I.
 - (d) There exists a unique line through P parallel to I.
- 6. "The angle sum of any triangle is \leq 180 degree." This theorem is
 - (a) not true in Euclidean Geometry
 - (b) not true in Hyperbolic Geometry
 - (c) not true in Elliptic Geometry
 - (d) true in Neutral Geometry only

Problems 7 to 10: Give the definitions.

- 7. segment AB < segment CD
- 8. $\angle BAC \leq \angle EDF$
- 9. a point P is inside a circle

10. ray AD is between ray AB and ray AC

Problems 11 to 14: Write the propositions in detail.

- 11. Segment Subtraction
- 12. ASA Criterion
- 13. Angle Ordering
- 14. Every angle has a unique bisector

Problem 15: Fill in the blank with the right reasoning.

Given $\triangle ABC$ and $\triangle DEF$. If $\angle A \approx \angle D$ and $\angle C \approx \angle F$ and $AC \approx DF$ then $\triangle ABC \approx \triangle DEF$. Proof.

- 1. There is a unique point G on the ray DE such that DG \approx AB (_____)
- 2. ΔABC ≈ ΔDGF (_____)
- 3. ∠DFG ≈ ∠C
- 4. ray FE = ray FG (_____)
- 5. G = E
- 6. ΔABC ≈ ΔDEF

Problem 16: Prove the following proposition.

Given $\triangle ABC$, $\angle B \approx \angle C$ if and only if $AB \approx AC$.