PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Module:	Modern Euclidean Geometry	Paper:	Exam 1
Instructor:	Amin Witno	Date:	3 April 2005

Problems 1 to 7: Circle the best choice, 1 point each.
(1)

The negation of the statement S : "For every two points P and Q there is a unique line incident with P and Q " is the statement $\sim S$: "For every two points P and Q there is more than one line incident with P and Q ". (a) true (b) false
(2)

In Elliptic geometry there are no parallel lines. (a) true (b) false
Three points A, B, C are collinear means that the lines AB and AC are parallel. (a) true (b) false

Problems 4 to 7: Consider the following model.
Points are A, B, C, D and Lines are $\{A, B\},\{A, C\},\{A, B, D\},\{B, C, D\}$
(4)

In this model the Incidence Axiom 1 is (a) true (b) false.
In this model the Incidence Axiom 2 is (a) true (b) false.
(6)

In this model the Incidence Axiom 3 is (a) true (b) false.
This model satisfies the parallel postulate of (a) Euclidean (b) Elliptic
(c) Hyperbolic geometry
(d) none of them

Problems 8 to 13: Write the definitions, 1 point each.
(8)

The midpoint of two points A and B
(9)
the ray $A B$
(10)
opposite rays
(11)
the angle BAC
(12)
the interior of an angle
(13)
A and B are on the same side of a line I

Find a model with 3 points such that the Incidence Axioms 1, 2, 3 are all false. (1 point)

Points: $\quad A, B, C$
Lines:

Write the correct reasons to justify the steps of this proof, 0.5 point each.
Given $A^{*} B^{*} \mathrm{C}$ and $\mathrm{B}^{*} \mathrm{C}^{*} \mathrm{D}$ then $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are all distinct and collinear and $A^{*} C^{*} D$.

Proof.

1. A, B, C are distinct and collinear (\qquad)
2. B, C, D are distinct and collinear (same as 1)
3. Suppose $\mathrm{A}=\mathrm{D}$ (proof by contradiction)
4. Then $A^{*} B^{*} C=D^{*} B^{*} C$
5. This is impossible because $B^{*} C^{*} D($
6. So $A \neq D$ and A, B, C, D all distinct
7. Let A, B, C be on the line I and B, C, D be on the line I_{2}
8. Both I and I_{2} pass through B and C, so $I=I_{2}$ (\qquad
9. So A, B, C, D on the line I, collinear
10. There exists a point P not on I (\qquad _)
11. There exists a line m passing through P and $C($ \qquad _)
12. Suppose A and B are on opposite sides of m (proof by contradiction)
13. Then segment $A B$ intersects m (\qquad _)
14. This intersection must be $\mathrm{C}($

15. Then C belongs to segment $A B, A^{*} C^{*} B$
16. This is impossible because $A^{*} B^{*} C$ \qquad
17. So A and B are on the same side of m
18. B and D are on opposite sides of m (\qquad
19. So A and D are on opposite sides of m \qquad
20. Then segment AD intersects m (same as 13)
21. This intersection must be C (same as 14)
22. So C belongs to segment $A D, A^{*} C^{*} D$

Prove the following proposition (3 points).
Given a line I and 3 distinct points A, B, C, not collinear. If I intersects the segment $A B$ then I also intersects either segment $A C$ or segment $B C$.

