PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Module: Modern Euclidean Geometry	Paper:	Exam 1	
Instructor: Amin Witno	Date:	3 April 2005	

Problems 1 to 7: Circle the best choice, 1 point each.

(1) (2) (3)	The negation of the statement S: "For every two points P and Q there is a unique line incident with P and Q" is the statement \sim S: "For every two points P and Q there is more than one line incident with P and Q". (a) true (b) false
	In Elliptic geometry there are no parallel lines. (a) true (b) false Three points A, B, C are collinear means that the lines AB and AC are parallel. (a) true (b) false
Proble Points	ms 4 to 7: Consider the following model. are A, B, C, D and Lines are {A, B}, {A, C}, {A, B, D}, {B, C, D}
(4) (5) (6) (7) Proble (8)	In this model the Incidence Axiom 1 is (a) true (b) false. In this model the Incidence Axiom 2 is (a) true (b) false. In this model the Incidence Axiom 3 is (a) true (b) false. This model satisfies the parallel postulate of (a) Euclidean (b) Elliptic (c) Hyperbolic geometry (d) none of them ms 8 to 13: Write the definitions, 1 point each.
(9)	the ray AB
(10)	opposite rays

(11) the angle BAC

(12)

the interior of an angle

(13)

A and B are on the same side of a line I

(14)

Find a model with 3 points such that the Incidence Axioms 1, 2, 3 are all false. (1 point)

Points: A, B, C

Lines:

(15)

Write the correct reasons to justify the steps of this proof, 0.5 point each.

Given A*B*C and B*C*D then A, B, C, D are all distinct and collinear and A*C*D.

Proof.

- 1. A, B, C are distinct and collinear (_____ 2. B, C, D are distinct and collinear (same as 1) Suppose A = D (proof by contradiction)
 Then A*B*C = D*B*C 5. This is impossible because B*C*D (6. So A \neq D and A, B, C, D all distinct 7. Let A, B, C be on the line I and B, C, D be on the line I₂ 8. Both I and I_2 pass through B and C, so $I = I_2$ (_____ 9. So A, B, C, D on the line I, collinear 12. Suppose A and B are on opposite sides of m (proof by contradiction) 13. Then segment AB intersects m (14. This intersection must be C (_____ 15. Then C belongs to segment AB, A*C*B 16. This is impossible because A*B*C (____ 17. So A and B are on the same side of m 18. B and D are on opposite sides of m (___ 19. So A and D are on opposite sides of m (20. Then segment AD intersects m (same as 13) 21. This intersection must be C (same as 14) 22. So C belongs to segment AD, A*C*D
- (16)

Prove the following proposition (3 points).

Given a line I and 3 distinct points A, B, C, not collinear. If I intersects the segment AB then I also intersects either segment AC or segment BC.