Department of Basic Sciences - Philadelphia University

Exam 2

Discrete Structures
27-12-2018
Part I. (1 point each) Multiple choice; Circle one answer.

1. Let $|A|=27$. How many subsets of A have 2 elements?
(A) 325
(B) 351
(C) 378
(D) 406
2. Count how many non-negative integer solutions of $A+B+C+D=30$ with condition $A \geq 13$. Answer in $C(n, k)$:
(A) $C(19,3)$
(B) $C(20,3)$
(C) $C(21,3)$
(D) $C(22,3)$
3. Find a function that gives the sequence $3,4,7,12,19, \ldots$
(A) $n^{2}+3$
(B) $n^{2}+4$
(C) $2^{n}+2$
(D) $2^{n}+3$
4. Given $R=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] \quad S=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ compute the matrix $R \circ S$.
(A)
$\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
(B)
(C)
(D)
$\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
5. Given the relation matrix $\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$ draw the Hasse diagram.
(a)

(b)

(c)

(d)

6. Given the incidence matrix $\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$ find the adjacency matrix.
(A)
$\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$
(B)
(C)
(D)
$\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$
$\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$

Part II. Write your solutions in the space provided.
7. (1 point) Given $S(0)=0, S(1)=1$ and $S(n)=2 S(n-1)+3 S(n-2)$, find $S(5)$ 8. (2 points) Count how many non-negative integer solutions of $A+B+C=10$ with condition $A \leq 5$.
9. (3 points) Given $R=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ find the matrix for the transitive closure \bar{R}.
10. (4 points) Use induction and prove the formula for all integers $n \geq 1$.

$$
1+7+49+\cdots+7^{n+1}=\frac{7^{n+2}-1}{6}
$$

11. (4 points) Find the function $S(n)$ given the recurrence relation

$$
S(n)=2 S(n-1)+15 S(n-2)
$$

with $S(0)=1$ and $S(1)=2$.

