Department of Basic Sciences — Philadelphia University

Exam 2 Discrete Structures 05–01–2017

Part I. (1 point each) Multiple choice: circle one answer.

- 1. The sequence 3, 4, 11, 30, 67, ... is given by the function (A) $n^2 + 3$ (B) $2^n + 2$ (C) $n^3 + 3$ (D) $3^n - 2^n + 3$
- 2. The sequence 1, 1, 5, 9, 29, ... is given by the recurrence relation (A) f(n) = 2f(n-1) + 3f(n-2) (B) f(n) = f(n-1) + 4f(n-2)(C) f(n) = 3f(n-1) + 2f(n-2) (D) f(n) = 4f(n-1) + f(n-2)

3. The relation $R = \{(x, y) \mid x \mod y \ge 1\}$ is represented by the matrix

(A)	(B)	(C)		(D)	
$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$	1]	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	0 0]
1 1 0 0	1 1 0 0	0 0 1	1	0 0	1 1
1 0 1 0	1 1 1 0	0 1 0	1	0 0	0 1
		0 0 1	0		0 0

4. The relation $R = \{(1, 1), (1, 3), (2, 2), (3, 1)\}$ is (A) symmetric (F); transitive (T) (B) symmetric (F); transitive (F) (C) symmetric (T); transitive (T) (D) symmetric (T); transitive (F)

5. For $A = \{1, 3, 5, 8, 10\}$, the equivalence classes associated with the equivalence relation $R = \{(x, y) \mid (x - y) \mod 2 = 0\}$ are

- (A) $\{1, 3, 5\}, \{8, 10\}$
- (C) $\{1, 10\}, \{3\}, \{5, 8\}$

(B) $\{1,3\}, \{6,8,10\}$ (D) $\{1,10\}, \{3,6\}, \{8\}$

3.

6. The given Hasse diagram coincides with the matrix

		4	
$(\underline{\mathbf{A}})$	(B)	(C)	(D)
$\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$	$0] \begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$
0 1 0 0		0 1 0 0	$0 \ 1 \ 0 \ 0$
0 1 1 0		0 0 0 1 0	
		$ \begin{pmatrix} (C) \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} $	$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$

7. A total order relation is represented by the matrix

(A)			(B)				(C)				((D)				
□ 1 0	1	0]	 	0	1	0] [1	1	0	0]		[1]	0	1	0]	
0 1	1	0	1	1	1	0	1	1	0	1		0	1	0	1	
0 0	1	0	0	0	1	0	0	0	1	1		1	0	1	0	
L 1 1	1	1	L 1	1	1	1 _		1	0	1		0	1	0	1	

Part II. (13 points) Complete solution: write the answers in the space provided.

8. Find the function f(n) given by its recurrence relation.

$$\begin{cases} f(n) = 6f(n-1) - 9f(n-2) \\ f(0) = 2 \\ f(1) = 7 \end{cases}$$

9. Use induction to prove the following formula for all integers $n \ge 1$.

$$1 + 2 + 3 + 4 + \dots + (n + 1) = \frac{(n + 2)(n + 1)}{2}$$

10. Given the relation R, find the matrix for the transitive closure \overline{R} .

$$R = \left[\begin{array}{rrrr} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

–Amin Witno