Department of Basic Sciences - Philadelphia University

Exam 1
 Discrete Structures
 28-11-2016

Part I. (1 point each) Multiple choice: circle one answer.

1. The proposition $(p \vee q) \rightarrow q \equiv$
(A) $p \rightarrow q$
(B) $q \rightarrow p$
(C) $\neg p \rightarrow q$
(D) $\neg q \rightarrow p$
2. The set $\{1,2,4,5\} \oplus\{2,4,6\}=$
(A) $\{1,5\}$
(B) $\{2,4,6\}$
(C) $\{2,4\}$
(D) $\{1,5,6\}$
3. Let $A=\{1,2,3,4\}$ and $B=\{3,4,5\}$. Then $|P(A-B)|=$
(A) 2
(B) 4
(C) 8
(D) 16
4. The set $A-(A \oplus B)=$
(A) $A \cup B$
(B) $A \cap B$
(C) $A-B$
(D) \emptyset
5. The remainder $5634 \bmod 11=$
(A) 0
(B) 1
(C) 2
(D) 7
6. A multiple of 8 is
(A) 222
(B) 225
(C) 245
(D) 256
7. The number of non-negative integer solutions for $A+B+C=15$ is
(A) 105
(B) 120
(C) 136
(D) 153

Part II. Complete solution: write your solution on a separate page.
8. (2 points) Evaluate gcd $(4050,540)$ using the Euclidean algorithm.
9. (3 points) Convert the proposition $(P \rightarrow Q) \leftrightarrow R$ to CNF.
10. (3 points) Let A be a set with $|A|=13$. Count how many subsets of A which contain at least 3 elements.
11. (5 points) From 1 to 400, count how many integers which are NOT multiples of 8 or 12 or 18 .

