${\bf D} {\rm epartment}$ of Basic Sciences — Philadelphia University

Final Exam	Discrete Strue	Discrete Structures	
Part I. (2 points each) Circle one answer from the multiple choice.			
1. Which set identity is true? (A) $(A \oplus B) - B = A$ (B) $(A \oplus B) \oplus B = A$ (C) $(A - B) - B = A$ (D) $(A - B) \oplus B = A$			
2. If $ A = 11$, how many subsets of A have 8 elements?			
(A) 990	(B) 165	(C) 110	(D) 55
3. Compute GCD (609, 1 (A) 9	234). (B) 6	(C) 3	(D) 2
4. How many from 1 to 200 are not multiples of 6 or 15?			
(A) 31	(B) 40	(C) 160	(D) 169
5. The matrix $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ represents a relation that is (A) symmetric (T); anti-symmetric (T) (B) symmetric (T); anti-symmetric (F) (C) symmetric (F); anti-symmetric (T) (D) symmetric (F); anti-symmetric (F)			
6. Convert the incidence	$\begin{array}{c} \text{matrix} \\ \begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}$		rix.
7. Which graph has 12 e (A) K_6	edges? (B) $K_{4,3}$	(C) C_{24}	(D) <i>P</i> ₂₄
8. Which graph has dian (A) K_4	neter 3? (B) $K_{4,4}$	(C) C_4	(D) P_4
9. Which graph is an Eu (A) $K_{2,5}$	$\begin{array}{l} \text{ler path?} \\ \text{(B) } K_{9,9} \end{array}$	(C) K_{12}	(D) $K_{4,3}$

10. Find the total weight of the Minimal Spanning Tree (MST) for this graph.

Part II. (5 points each) Write complete solutions.

11. Let R be the partial order relation given by the matrix

$$R = \left[\begin{array}{rrrrr} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{array} \right]$$

- (a) Draw the graph.
- (b) Draw the Hasse diagram.
- (c) Is R a total order relation?
- 12. Find the function S(n) given the recurrence relation S(n) = S(n-1) + 20S(n-2) with S(0) = 3 and S(1) = 2.
- 13. Let R be the relation given by the matrix

$$R = \left[\begin{array}{rrrrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

Find the matrix of the transitive closure \overline{R} .

14. Solve the Chinese Postman Problem (CPP) for the given graph.

-Amin Witno