Department of Basic Sciences - Philadelphia University

Final Exam

Discrete Structures

15-06-2016
Part I. (2 points each) Circle one answer from the multiple choice.

1. Which set identity is true?
(A) $(A \oplus B)-B=A$
(B) $(A \oplus B) \oplus B=A$
(C) $(A-B)-B=A$
(D) $(A-B) \oplus B=A$
2. If $|A|=11$, how many subsets of A have 8 elements?
(A) 990
(B) 165
(C) 110
(D) 55
3. Compute GCD $(609,234)$.
(A) 9
(B) 6
(C) 3
(D) 2
4. How many from 1 to 200 are not multiples of 6 or 15 ?
(A) 31
(B) 40
(C) 160
(D) 169
5. The matrix $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$ represents a relation that is
(A) symmetric (T); anti-symmetric (T)
(B) symmetric (T); anti-symmetric (F)
(C) symmetric (F); anti-symmetric (T)
(D) symmetric (F); anti-symmetric (F)
6. Convert the incidence matrix $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$ to adjacency matrix.
(A)
$\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$
(B)
$\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$
(C)
$\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$
(D)
$\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$
7. Which graph has 12 edges?
(A) K_{6}
(B) $K_{4,3}$
(C) C_{24}
(D) P_{24}
8. Which graph has diameter 3?
(A) K_{4}
(B) $K_{4,4}$
(C) C_{4}
(D) P_{4}
9. Which graph is an Euler path?
(A) $K_{2,5}$
(B) $K_{9,9}$
(C) K_{12}
(D) $K_{4,3}$
10. Find the total weight of the Minimal Spanning Tree (MST) for this graph.

(A) 9
(B) 10
(C) 11
(D) 12

Part II. (5 points each) Write complete solutions.
11. Let R be the partial order relation given by the matrix

$$
R=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

(a) Draw the graph.
(b) Draw the Hasse diagram.
(c) Is R a total order relation?
12. Find the function $S(n)$ given the recurrence relation $S(n)=S(n-1)+20 S(n-2)$ with $S(0)=3$ and $S(1)=2$.
13. Let R be the relation given by the matrix

$$
R=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Find the matrix of the transitive closure \bar{R}.
14. Solve the Chinese Postman Problem (CPP) for the given graph.

-Amin Witno

