Department of Basic Sciences - Philadelphia University

Exam 2

Discrete Structures

12-05-2016
Part I. (2 points each) Circle one answer from the multiple choice.

1. The sequence $4,5,12,31,68, \ldots$ is given by the function $S_{n}=$
(A) $n^{2}+4$
(B) $4 n+4$
(C) $n^{3}+4$
(D) $3 n+4$
2. If $R=\{(1,4),(2,1),(3,2),(4,3)\}$ then $R^{3}=$
(A) $\{(1,4),(2,1),(3,2),(4,3)\}$
(B) $\{(1,3),(2,4),(3,2),(4,1)\}$
(C) $\{(1,2),(2,4),(3,1),(4,3)\}$
(D) $\{(1,2),(2,3),(3,4),(4,1)\}$
3. The matrix $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$ represents a relation that is
(A) reflexive (F); symmetric (F); anti-symmetric (F); transitive (T)
(B) reflexive (F); symmetric (F); anti-symmetric (F); transitive (F)
(C) reflexive (F); symmetric (F); anti-symmetric (T); transitive (T)
(D) reflexive (F); symmetric (F); anti-symmetric (T); transitive (F)
4. Let $A=\{1,2,3,4\}$. Which relation on A is a total order?
(A) $R=\{(a, b) \mid b>a\}$
(B) $R=\{(a, b) \mid a \bmod b=1\}$
(C) $R=\{(a, b) \mid a \geq b\}$
(D) $R=\{(a, b) \mid a \bmod b=0\}$
5. Convert the Hasse diagram

(A)
(B)
(C)
(D)
$\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$
$\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right]$
$\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$
$\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$

Part II. (10 points total) Write complete solutions.
6. Find the function S_{n} given the following recurrence $S_{n}=2 S_{n-1}+15 S_{n-2}$ with $S_{0}=1$ and $S_{1}=2$.
7. Use induction to prove the following formula for all integers $n \geq 1$.

$$
1+6+36+\cdots+6^{n}=\frac{6^{n+1}-1}{5}
$$

8. Let $A=\{2,3,4,5,8,9\}$ and $R=\{(x, y) \mid x \bmod 3=y \bmod 3\}$. (a) Draw the graph for this equivalence relation. (b) Find the equivalence classes.
