Exam 2

Discrete Structures

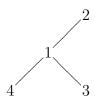
23 - 12 - 2015

Part I. (2 points each) Circle one answer from the multiple choice.

- 1. The sequence 2, 6, 10, 14, 18, 22, ... is given by the function $S_n =$
 - (A) $n^2 + 2$
- (B) 4n+2 (C) 2^n+1
- (D) 2n + 2

- 2. If $R = \{(1,2), (1,3), (3,1)\}$ then $R^{-2} =$

- (A) $\{(1,1),(2,3),(3,3)\}$ (B) $\{(1,1),(3,2),(3,3)\}$ (C) $\{(1,1),(2,1),(3,3)\}$ (D) $\{(1,1),(1,2),(3,3)\}$
- 3. The matrix $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ represents a relation that is
 - (A) reflexive (F); symmetric (F); anti-symmetric (F); transitive (T)
 - (B) reflexive (F); symmetric (F); anti-symmetric (F); transitive (F)
 - (C) reflexive (F); symmetric (F); anti-symmetric (T); transitive (T)
 - (D) reflexive (F); symmetric (F); anti-symmetric (T); transitive (F)
- 4. Let $A = \{1, 2, 3, 4, 5\}$. Which relation on A is a partial order?
 - (A) $R = \{(a, b) \mid a \mod b = 0\}$
- (C) $R = \{(a, b) \mid a \mod b = 1\}$
- (B) $R = \{(a, b) \mid a \mod 2 = b \mod 2\}$ (D) $R = \{(a, b) \mid a \mod 2 = b \mod 3\}$
- 5. Convert the Hasse diagram



- $\begin{bmatrix}
 1 & 1 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 1 & 1 & 0
 \end{bmatrix}
 \quad
 \begin{bmatrix}
 1 & 1 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 1 & 1 & 1 & 0
 \end{bmatrix}
 \quad
 \begin{bmatrix}
 1 & 1 & 1 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0
 \end{bmatrix}
 \quad
 \begin{bmatrix}
 1 & 1 & 1 & 0 \\
 0 & 1 & 0 & 0 \\
 1 & 1 & 1 & 0
 \end{bmatrix}$

Part II. (5 points each) Write complete solutions.

- 6. Find the function S_n given the following recurrence $S_n = S_{n-1} + 20S_{n-2}$ with $S_0 = 1$ and $S_1 = 2$.
- 7. Use induction to prove the following formula for all integers $n \geq 1$.

$$1 + 8 + 64 + \dots + 8^n = \frac{8^{n+1} - 1}{7}$$

-Amin Witno