## Department of Basic Sciences - Philadelphia University

## Exam 2

## Discrete Structures

Part I. (2 points each) Circle one answer from the multiple choice.

1. The sequence $2,6,10,14,18,22, \ldots$ is given by the function $S_{n}=$
(A) $n^{2}+2$
(B) $4 n+2$
(C) $2^{n}+1$
(D) $2 n+2$
2. If $R=\{(1,2),(1,3),(3,1)\}$ then $R^{-2}=$
(A) $\{(1,1),(2,3),(3,3)\}$
(B) $\{(1,1),(3,2),(3,3)\}$
(C) $\{(1,1),(2,1),(3,3)\}$
(D) $\{(1,1),(1,2),(3,3)\}$
3. The matrix $\left[\begin{array}{cccc}1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$ represents a relation that is
(A) reflexive ( F ); symmetric ( F ); anti-symmetric ( F ); transitive ( T )
(B) reflexive (F); symmetric (F); anti-symmetric (F); transitive (F)
(C) reflexive (F); symmetric (F); anti-symmetric (T); transitive (T)
(D) reflexive ( F ); symmetric ( F ); anti-symmetric $(\mathrm{T})$; transitive $(\mathrm{F})$
4. Let $A=\{1,2,3,4,5\}$. Which relation on $A$ is a partial order?
(A) $R=\{(a, b) \mid a \bmod b=0\}$
(B) $R=\{(a, b) \mid a \bmod 2=b \bmod 2\}$
(C) $R=\{(a, b) \mid a \bmod b=1\}$
(D) $R=\{(a, b) \mid a \bmod 2=b \bmod 3\}$
5. Convert the Hasse diagram

(A)
(B)
$\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$
$\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right]$
(C)
(D) to matrix.

Part II. (5 points each) Write complete solutions.
6. Find the function $S_{n}$ given the following recurrence $S_{n}=S_{n-1}+20 S_{n-2}$ with $S_{0}=1$ and $S_{1}=2$.
7. Use induction to prove the following formula for all integers $n \geq 1$.

$$
1+8+64+\cdots+8^{n}=\frac{8^{n+1}-1}{7}
$$

