Department of Basic Sciences — Philadelphia University

Exam 2 Discrete Structures 10–05–2015

Part I. (2 points each) Circle one answer from the multiple choice.

1. The sequence 2, 3, 6, 11, 18, 27, ... is given by the function $S_n =$

(A) $n^2 + 2$ (B) 4n + 2 (C) $2^n + 1$ (D) 2n + 2

2. If
$$R = \{(1,3), (2,1), (3,1)\}$$
 then $R^{-2} =$

$$(A) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} (B) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} (C) \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} (D) \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3. The matrix
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 represents a relation that is

(A) reflexive (F); symmetric (F); anti-symmetric (F); transitive (T)

- (B) reflexive (F); symmetric (F); anti-symmetric (F); transitive (F)
- (C) reflexive (F); symmetric (F); anti-symmetric (T); transitive (T)
- (D) reflexive (F); symmetric (F); anti-symmetric (T); transitive (F)

4. Let $A = \{1, 2, 3, 4\}$. Which relation on A is a total order?

$$\begin{array}{ll} \text{(A)} \ R = \{(a,b) \in A \times A \mid a < b\} \\ \text{(C)} \ R = \{(a,b) \in A \times A \mid a \leq b\} \end{array} \end{array} \\ \begin{array}{ll} \text{(B)} \ R = \{(a,b) \in A \times A \mid a = b\} \\ \text{(D)} \ R = \{(a,b) \in A \times A \mid a \neq b\} \end{array} \end{array}$$

Part II. (4 points each) Write complete solutions.

5. Find the function S_n given the following recurrence.

$$S_n = S_{n-1} + 12S_{n-2}$$
$$S_0 = 1$$
$$S_1 = 2$$

6. Prove the following formula for all integers $n \ge 1$.

$$1 + 9 + 81 + \dots + 9^n = \frac{9^{n+1} - 1}{8}$$

- 7. Let $A = \{2, 3, 4, 6, 12\}$ and $R = \{(a, b) \in A \times A \mid a \mod b = 0\}.$
 - (a) Draw the graph for the relation R.
 - (b) Prove that R is a partial order relation.
 - (c) Draw the Hasse diagram for R.

-Amin Witno