Department of Basic Sciences - Philadelphia University

Exam 2

Discrete Structures

10-05-2015
Part I. (2 points each) Circle one answer from the multiple choice.

1. The sequence $2,3,6,11,18,27, \ldots$ is given by the function $S_{n}=$
(A) $n^{2}+2$
(B) $4 n+2$
(C) $2^{n}+1$
(D) $2 n+2$
2. If $R=\{(1,3),(2,1),(3,1)\}$ then $R^{-2}=$
(A) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$
(B) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1\end{array}\right]$
(C) $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
3. The matrix $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$ represents a relation that is
(A) reflexive (F); symmetric (F); anti-symmetric (F); transitive (T)
(B) reflexive (F); symmetric (F); anti-symmetric (F); transitive (F)
(C) reflexive (F); symmetric (F); anti-symmetric (T); transitive (T)
(D) reflexive (F); symmetric (F); anti-symmetric (T); transitive (F)
4. Let $A=\{1,2,3,4\}$. Which relation on A is a total order?
(A) $R=\{(a, b) \in A \times A \mid a<b\}$
(B) $R=\{(a, b) \in A \times A \mid a=b\}$
(C) $R=\{(a, b) \in A \times A \mid a \leq b\}$
(D) $R=\{(a, b) \in A \times A \mid a \neq b\}$

Part II. (4 points each) Write complete solutions.
5. Find the function S_{n} given the following recurrence.

$$
\begin{aligned}
& S_{n}=S_{n-1}+12 S_{n-2} \\
& S_{0}=1 \\
& S_{1}=2
\end{aligned}
$$

6. Prove the following formula for all integers $n \geq 1$.

$$
1+9+81+\cdots+9^{n}=\frac{9^{n+1}-1}{8}
$$

7. Let $A=\{2,3,4,6,12\}$ and $R=\{(a, b) \in A \times A \mid a \bmod b=0\}$.
(a) Draw the graph for the relation R.
(b) Prove that R is a partial order relation.
(c) Draw the Hasse diagram for R.
