

DEPARTMENT OF BASIC SCIENCES

Final Exam A

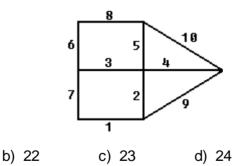
DISCRETE STRUCTURES

14-06-2014

PART (I) Each problem is worth 2 points. Circle one answer.

1) $A = \{1, 2, 3, 4, 5\}$ and $B = \{2, 4, 6\}$ and $C = \{1, 2, 3\}$. Which set is $\{2, 4, 5\}$?

a) ((A − B) ⊕ C	b)	$(C - B) \oplus A$
c) ($(A - C) \oplus B$	d)	(B − A) ⊕ C


2) Let R = { (1,4), (2,1), (3,2), (4,1) }. Which matrix represents R^2 ?

a)	0 0 0 0	0 0 0 0	0 1 1 0	1 0 0 1	b)	0 1 0 0	1 0 0 0	0 0 0 1	0 0 1 0	c)	0 0 0 1	1 0 0 0	0 1 0 0	0 0 1 0	d)	1 0 1 0	0 0 0 0	0 0 0 0	0 1 0 1	
	[0	0	0	l		[0	0	I	0		[]	0	0	0		[0	0	0	l	

3) Convert the proposition $(p \land q) \lor (\neg p \land \neg q)$ to CNF.

a) $(p \lor q) \land (\neg p \lor q)$ b) $(p \lor q) \land (\neg p \lor q)$ c) $(p \lor q) \land (\neg p \lor q)$ d) $(p \lor q) \land (\neg p \lor q)$

4) What is the value of the minimal spanning tree for this graph?

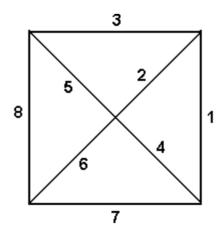
5) How many integers from 1 to 1000 are multiples of 8 and not of 6?

a) 63 b) 84 c) 126 d) 167

6) Which graph has the largest degree?

a) 21

- a) P22 b) K5,6 c) K10 d) C11
- 7) Which graph has an Euler path, not circuit?


a) K_6 b) K_9 c) K_2,9 d) K_1,6

8) Which incidence matrix represents a tree?

a)	$\begin{bmatrix} 1\\0\\1\\0\\0 \end{bmatrix}$	0 1 0 1 0	1 0 0 1 0	$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	b)	$\begin{bmatrix} 0\\0\\1\\1\\0 \end{bmatrix}$	0 1 1 0 0	0 1 0 0	$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	c)	$\begin{bmatrix} 0\\0\\1\\1\\0 \end{bmatrix}$	0 1 0 1 0	1 0 0 0 1	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	d)	$\begin{bmatrix} 0\\0\\1\\1\\0 \end{bmatrix}$	0 1 0 0 1	1 0 0 0 1	1 1 0 0 0	
9) Convert the incidence matrix $ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} $ to adjacency matrix.																				
a)	$\begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$	1 0 0 1	1 0 0 1	$\begin{bmatrix} 0\\1\\1\\0\end{bmatrix}$	b)	$\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$	0 0 1 1	1 1 0 0	$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	c)	$\begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$	1 0 1 1	1 1 0 0	$\begin{bmatrix} 0\\1\\0\\0\end{bmatrix}$	d)	$\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$	0 0 1 1	1 1 0 1	$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$	
10) Which matrix represents a partial order relation?																				
a)	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	1 1 0	0 1 1			b) [1 0 1	1 0 0	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$		C)) [1]]		1 1 1 0) 1			d)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0 1 0	1 1 1

PART (II) Each problem is worth 5 points. Write complete solutions.

- 11) Evaluate GCD (366, 168) and LCM (366, 168).
- 12) How many permutations using the letters {A, C, E, M, N, S, T} which do not contain the word CAT or the word MAN?
- 13) Use induction to prove $2^n < n!$ for all integer $n \ge 4$.
- 14) Solve the Chinese postman problem (CPP) for the given graph.

--Amin Witno