PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Second Exam A

Part 1 Each problem is worth 2 points. Circle one answer.

1) The sequence $5,6,9,14,21,30, \ldots$ is given which function?
a) $S(n)=4 n+5$
b) $S(n)=n^{2}+5$
c) $S(n)=5 n+4$
d) $S(n)=2^{n}+4$
2) Which relation has transitive (T) and anti-symmetric (F) ?
a) $\{(1,3),(3,1),(1,1),(4,4)\}$
b) $\{(1,3),(2,1),(2,3),(4,4)\}$
c) $\{(1,3),(2,3),(2,4),(3,4)\}$
d) $\{(1,3),(3,1),(1,1),(3,3)\}$
3) Let $A=\{1,3,4,9,11,12\}$ and $R=\{(a, b) \mid a \bmod 3=b \bmod 3\}$ is an equivalence relation on A. Find the equivalence classes.
a) $\{1,4\},\{3,9,12\},\{11\}$
b) $\{1,3,9,11\},\{4,12\}$
c) $\{1,9\},\{3,11\},\{4,12\}$
d) $\{1,11\},\{3\},\{4,9\},\{12\}$
4) Change the Hasse diagram to matrix.

а) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right]$
c) $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
d) $\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$

Part 2 Each problem is worth 4 points. Write complete solution.
5) Find the formula for the recursive sequence $S(n)=2 S(n-1)+8 S(n-2)$ given that $S(0)=1$ and $S(1)=2$.
6) Prove the formula for all integers $\mathrm{n} \geq 1$ using induction.

$$
1+5+25+\ldots+5^{n-1}=\frac{5^{n}-1}{4}
$$

7) Let $R=\{(1,4),(2,1),(3,4),(4,2)\}$. Find the matrix for the transitive closure.
