PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

PART (I) Each problem is worth 2 points. Circle one answer.

1) Evaluate $\operatorname{LCM}(493,323)$.
a) 7429
b) 8303
c) 8381
d) 9367
2) How many permutations with $\{A, B, C, D, E, F\}$ do not contain "ACE" ?
a) 24
b) 120
c) 696
d) 714
3) Let $A=\{2,5,6,7,9\}$ and the equivalence relation $R=\{(a, b) \mid a \bmod 2=b \bmod 2\}$. Find the equivalence classes.
a) $\{2,6\},\{5,7,9\}$
b) $\{2,7,9\},\{5,6\}$
c) $\{2,4,8\},\{5,7\}$
d) $\{2,7,8\},\{4,5\}$
4) Let $R=\{(1,3),(2,1),(3,2),(4,2)\}$. Then $R^{3}=$
a) $\{(1,2),(2,3),(3,1),(4,1)\}$
b) $\{(1,1),(2,2),(3,3),(4,3)\}$
c) $\{(1,4),(2,3),(3,1),(4,3)\}$
d) $\{(1,1),(2,4),(3,3),(4,4)\}$
5) How many integers from 1 to 1000 are multiples of 4 and not of 6 ?
a) 63
b) 84
c) 126
d) 167
6) Which graph has 12 edges?
a) $P _6$
b) C_6
c) $K _6$
d) K _2,6
7) Which graph has the largest diameter?
a) C_9
b) K_9
c) P_9
d) $\mathrm{K} _9,9$
8) Which graph has an Euler circuit?
a) $K _6$
b) K_9
c) $\mathrm{K} _2,9$
d) K _ 1,6
9) Convert the incidence matrix $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$ to adjacency matrix.
a) $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
b) $\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right]$
c) $\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$
d) $\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
10) Find the weight of the minimal spanning tree (MST) for the given graph.

a) 21
b) 23
c) 24
d) 28

PART (II) Each problem is worth 5 points. Write complete solutions.
11) Convert the proposition $(P \leftrightarrow Q) \rightarrow R$ to $C N F$.
12) Use induction to prove $2^{n}<n$! for all integer $n \geq 4$.
13) Let $A=\{2,3,6,9,18\}$ and $R=\{(a, b) \mid b \bmod a=0\}$.
a) Draw the graph of R.
b) Prove that R is a partial order relation.
c) Draw the Hasse diagram for R.
14) Solve the Chinese postman problem (CPP) for the given graph.

