

PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

| Final Exam A                                                                                                                             | DISCRETE STRUCTURES |          | 04–02–2014                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|------------------------------------|--|
| <b>PART (I)</b> Each problem is worth 2 points. Circle one answer.                                                                       |                     |          |                                    |  |
| 1) Evaluate LCM (493, 323).                                                                                                              |                     |          |                                    |  |
| a) 7429                                                                                                                                  | b) 8303             | c) 8381  | d) 9367                            |  |
| 2) How many permutations with { A, B, C, D, E, F } do not contain "ACE" ?                                                                |                     |          |                                    |  |
| a) 24                                                                                                                                    | b) 120              | c) 696   | d) 714                             |  |
| 3) Let A = {2, 5, 6, 7, 9} and the equivalence relation R = {(a,b)   a mod 2 = b mod 2}.<br>Find the equivalence classes.                |                     |          |                                    |  |
| a) {2, 6}, {5<br>c) {2, 4, 8},                                                                                                           |                     |          | , 7, 9}, {5, 6}<br>, 7, 8}, {4, 5} |  |
| 4) Let $R = \{(1,3), (2,1), (3,2), (4,2)\}$ . Then $R^3 =$                                                                               |                     |          |                                    |  |
| a) {(1,2), (2,3), (3,1), (4,1)}<br>c) {(1,4), (2,3), (3,1), (4,3)}<br>b) {(1,1), (2,2), (3,3), (4,3)}<br>d) {(1,1), (2,4), (3,3), (4,4)} |                     |          |                                    |  |
| 5) How many integers from 1 to 1000 are multiples of 4 and not of 6?                                                                     |                     |          |                                    |  |
| a) 63                                                                                                                                    | b) 84               | c) 126   | d) 167                             |  |
| 6) Which graph has 12 edges?                                                                                                             |                     |          |                                    |  |
| a) P_6                                                                                                                                   | b) C_6              | c) K_6   | d) K_2,6                           |  |
| 7) Which graph has the largest diameter?                                                                                                 |                     |          |                                    |  |
| a) C_9                                                                                                                                   | b) K_9              | c) P_9   | d) K_9,9                           |  |
| 8) Which graph has an Euler circuit?                                                                                                     |                     |          |                                    |  |
| a) K_6                                                                                                                                   | b) K_9              | c) K_2,9 | d) K_1,6                           |  |



10) Find the weight of the minimal spanning tree (MST) for the given graph.



**PART (II)** Each problem is worth 5 points. Write complete solutions.

11) Convert the proposition  $(P \leftrightarrow Q) \rightarrow R$  to CNF.

12) Use induction to prove  $2^n < n!$  for all integer  $n \ge 4$ .

- 13) Let A = { 2, 3, 6, 9, 18 } and R = {  $(a,b) | b \mod a = 0$  }.
  - a) Draw the graph of R.
  - b) Prove that R is a partial order relation.
  - c) Draw the Hasse diagram for R.
- 14) Solve the Chinese postman problem (CPP) for the given graph.



--Amin Witno