PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Second Exam A

DISCRETE STRUCTURES
15-12-2013
Part 1 Each problem is worth 2 points. Circle one answer.

1) The sequence $3,4,7,12,19,28, \ldots$ is given which function?
a) $S(n)=6 n+3$
b) $S(n)=n^{2}+3$
c) $S(n)=3 n+6$
d) $S(n)=n^{2}+6$
2) Let $A=\{1,2,3,4\}$ and $R=\{(a, b) \mid a+b>3\}$. Which one is correct?
a) Reflexive (F); Symmetric (T); Anti-symmetric (F); Transitive (F)
b) Reflexive (T); Symmetric (T); Anti-symmetric (F); Transitive (T)
c) Reflexive (T); Symmetric (F); Anti-symmetric (T); Transitive (T)
d) Reflexive (F); Symmetric (F); Anti-symmetric (T); Transitive (T)
3) Which relation is an equivalence relation?
a) $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$
4) Change the Hasse diagram to matrix.

a) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right]$
c) $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
d) $\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$

Part 2 Each problem is worth 4 points. Write complete solution.
5) Find the formula for the recursive sequence $S(n)=3 S(n-1)+10 S(n-2)$ given that $S(0)=3$ and $S(1)=1$.
6) Prove the formula for all integers $\mathrm{n} \geq 1$ using induction.

$$
1+4+16+\ldots+4^{n-1}=\frac{4^{n}-1}{3}
$$

7) Let $R=\{(1,3),(2,1),(3,4),(4,1)\}$. Find the matrix for the transitive closure.
