PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam A

DISCRETE STRUCTURES
01-06-2013
PART (I) Each problem is worth 2 points. Circle one answer.

1) Convert the proposition $p \leftrightarrow q$ to $D N F$.
a) $(p \wedge \neg q) \vee(\neg p \wedge q)$
b) $(p \wedge q) \vee(\neg p \wedge q)$
c) $(p \wedge \neg q) \vee(\neg p \wedge \neg q)$
d) $(p \wedge q) \vee(\neg p \wedge \neg q)$
2) Let $A=\{1,2,3,4,5\}$ and $B=\{1,3,5,7\}$ and $C=\{2,4,6\}$. Then $(A \oplus B)-C=$
a) $\{6\}$
b) $\{7\}$
c) B
d) C
3) Let $A=\{1,2,3,4\}$. Which relation R is symmetric on A ?
a) $R=\{(a, b) \mid a-b<0\}$
b) $R=\{(a, b) \mid a<b+2\}$
c) $R=\{(a, b) \mid a+b<5\}$
d) $R=\{(a, b) \mid b<a+2\}$
4) Let $R=\{(1,2),(2,3),(3,3),(4,2)\}$. Then $R^{2}=$
a) $\{(1,3),(2,3),(3,4)\}$
b) $\{(1,3),(2,3),(3,3),(4,2)\}$
c) $\{(1,3),(2,3),(4,3)\}$
d) $\{(1,3),(2,3),(3,3),(4,3)\}$
5) Which matrix corresponds to the given Hasse diagram?

a) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right]$
c) $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
d) $\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
6) Which graph has the largest degree?
a) C_10
b) $P _10$
c) K _10
d) $\mathrm{K} _5,5$
7) Which graph has diameter 2?
a) $C _6$
b) $C _5$
c) $P _5$
d) K_4
8) Convert the incidence matrix $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$ to adjacency matrix.
a) $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
b) $\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right]$
c) $\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$
d) $\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
9) Which graph has an Euler circuit?
a) $\mathrm{K} _2,9$
b) P_10
c) $\mathrm{K} _10$
d) $\mathrm{K} _10,10$
10) Find the weight of the minimal spanning tree (MST) for the given graph.

a) 21
b) 23
c) 24
d) 28

PART (II) Each problem is worth 5 points. Write complete solutions.
11) Evaluate GCD $(9999,444)$.
12) How many permutations with $\{A, B, C, D, E, F, G, H\}$ contain "BACH" or "FED" ?
13) Find the formula for the sequence $S(n)$ given by the recurrence relation.

$$
\begin{aligned}
& S(n)=4 S(n-1)-4 S(n-2) \\
& S(0)=1 \\
& S(1)=6
\end{aligned}
$$

14) Solve the Chinese postman problem (CPP) for the given graph.

