

PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Second Exam A DISCRETE STRUCTURES

30-04-2013

Part 1 Each problem is worth 2 points. Circle one answer.

1) The sequence 3, 7, 11, 15, 19, 23, ... is given by the function

a) $S(n) = 4n + 3$	b) $S(n) = (n+2)^2 + 3$
c) $S(n) = 3n + 4$	d) $S(n) = (n+1)^2 + 4$

2) Let A = $\{1, 2, 3, 4\}$ and R = $\{(a,b) | a - b < 1\}$. Which one is correct?

- a) Reflexive (F); Symmetric (T); Anti-symmetric (F); Transitive (F)
- b) Reflexive (F); Symmetric (T); Anti-symmetric (F); Transitive (T)
- c) Reflexive (T); Symmetric (F); Anti-symmetric (T); Transitive (T)
- d) Reflexive (T); Symmetric (F); Anti-symmetric (T); Transitive (F)

3) Let $R = \{(1,2), (2,3), (3,2)\}$. Find the transitive closure of R.

a)	$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$	0 1 0	1 0 1	b)	$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$	1 1 1	1 1 1	c)	$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$	1 1 1	1 1 1	d)	$\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$	0 0 0	1 1 1	
----	---	-------------	-------------	----	---	-------------	-------------	----	---	-------------	-------------	----	---	-------------	-------------	--

			_			_
			1	0	1	0
4)	Find the equivalence classes from the equivalence relation				0	1
					1	0
			0	1	0	1
	a) {1, 3}, {2, 4}	b) {1, 2}, {3, 4}	L			٦

a) {1, 3}, {2, 4}	b) {1, 2}, {3, 4}
c) {1, 4}, {2, 3}	d) {1, 2}, {3}, {4}

Part 2 Each problem is worth 4 points. Write complete solution.

- 5) Find the formula for the recursive sequence S(n) = -2 S(n-1) + 15 S(n-2) given that S(0) = 1 and S(1) = 1.
- 6) Prove the formula for all integers $n \ge 1$ using induction. $1 + 5 + 25 + ... + 5^{n-1} = \frac{5^n - 1}{4}$
- 7) Let $A = \{2, 8, 4, 6, 12\}$ and $R = \{(a,b) \mid b \mod a = 0\}$.
 - a) Draw the digraph of R.
 - b) Prove that R is a partial order relation.
 - c) Draw the Hasse diagram.

--Amin Witno --Ameina Al-Taani