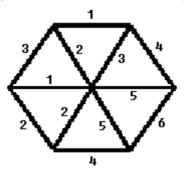
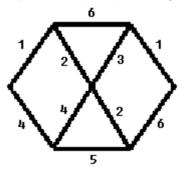


PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES



7) Which graph has no Euler path and no Euler circuit?


	a) K5				b) K2,5				c) K3,4				d) K4,2								
8)	Convert	the	e inc	cide	ence	e mat	rix	$\begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$	0 1 1 0	0 1 0 1	$\begin{bmatrix} 0\\0\\1\\1\end{bmatrix}$	to a	dja	cen	cy r	natrix	κ.				
	a)	$\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$	0 0 1 1	1 1 0 1	0 1 1 0	b)	$\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$	0 0 1 1	1 1 0 0	$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	c)	$\begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$	1 0 1 1	1 1 0 0	$\begin{bmatrix} 0\\1\\0\\0\end{bmatrix}$	d)	$\begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$	1 0 0 1	1 0 0 1	0 1 1 0	

PART (II) Each problem is worth 4 points. Write complete solutions.

- 9) Evaluate GCD (3102, 2013).
- 10) Find the function for the sequence S(0) = 3, S(1) = 3, S(n) = S(n-1) + 2 S(n-2).
- 11) Use induction to prove that $3^n < n!$ for all integer $n \ge 7$.
- 12) Let $A = \{1, 2, 3, 4\}$. Find one example of a relation for (a) and one for (b).
 - a) Reflexive (F); Symmetric (F); Anti-symmetric (F); Transitive (F)
 - b) Reflexive (F); Symmetric (T); Anti-symmetric (F); Transitive (T)
- 13) Find the minimal spanning tree (MST) for the following graph.

14) Solve the Chinese postman problem (CPP) for the graph below.

-Amin Witno