

PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Second Exam A DISCRETE STRUCTURES

11-12-2012

Part 1 Each problem is worth 2 points. Circle one answer.

1) The sequence 6, 11, 16, 21, 26, 31, ... is given by the function

a) S(n) = 5n + 6	b) $S(n) = (n+2)^2 + 2$
c) $S(n) = 3n + 6$	d) $S(n) = (n+1)^2 + 5$

- 2) Let A = $\{1, 2, 3, 4\}$ and R = $\{(a,b) | a + b > 3\}$. Which one is correct?
 - a) Reflexive (F); Symmetric (T); Anti-symmetric (F); Transitive (F)
 - b) Reflexive (F); Symmetric (T); Anti-symmetric (F); Transitive (T)
 - c) Reflexive (T); Symmetric (F); Anti-symmetric (T); Transitive (T)
 - d) Reflexive (T); Symmetric (F); Anti-symmetric (T); Transitive (F)

3) Let $R = \{(1,3), (2,3), (3,1)\}$. Find the transitive closure of R.

a)	1 0 1	0 1 0	1 0 1	b)	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	1 1 1	1 1 1	c)	1 1 1	1 1 1	1 1 1	d)	$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$	0 0 0	1 1 1	
----	-------------	-------------	-------------	----	---	-------------	-------------	----	-------------	-------------	-------------	----	---	-------------	-------------	--

			1	0	0	1	
4) F	Find the equivalence of	asses from the equivalence relation	0	1	1	0	
	T ind the equivalence cla		0	1	1	0	
			1	0	0	1	
	a) $\{1, 3\}, \{2, 4\}$	b) $\{1, 2\}$ $\{3, 4\}$	-				

a) {1, 3}, {2, 4}	b) {1, 2}, {3, 4}
c) {1, 4}, {2, 3}	d) {1, 2}, {3}, {4}

Part 2 Each problem is worth 4 points. Write complete solution.

- 5) Find the formula for the recursive sequence S(n) = 2 S(n-1) + 15 S(n-2) given that S(0) = 1 and S(1) = 3.
- 6) Prove the formula for all integers $n \ge 1$ using induction. $1 + 8 + 64 + ... + 8^{n-1} = \frac{8^n - 1}{7}$
- 7) Let $A = \{2, 3, 4, 6, 12\}$ and $R = \{(a,b) | b \mod a = 0\}$.
 - a) Draw the digraph of R.
 - b) Prove that R is a partial order relation.
 - c) Draw the Hasse diagram.

--Amin Witno