PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Second Exam A

Part 1 Each problem is worth 2 points. Circle one answer.

1) The sequence $6,11,16,21,26,31, \ldots$ is given by the function
a) $S(n)=5 n+6$
b) $S(n)=(n+2)^{2}+2$
c) $S(n)=3 n+6$
d) $S(n)=(n+1)^{2}+5$
2) Let $A=\{1,2,3,4\}$ and $R=\{(a, b) \mid a+b>3\}$. Which one is correct?
a) Reflexive (F); Symmetric (T); Anti-symmetric (F); Transitive (F)
b) Reflexive (F); Symmetric (T); Anti-symmetric (F); Transitive (T)
c) Reflexive (T); Symmetric (F); Anti-symmetric (T); Transitive (T)
d) Reflexive (T); Symmetric (F); Anti-symmetric (T); Transitive (F)
$3) \quad$ Let $R=\{(1,3),(2,3),(3,1)\}$. Find the transitive closure of R.
a) $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$
3) Find the equivalence classes from the equivalence relation $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
a) $\{1,3\},\{2,4\}$
b) $\{1,2\},\{3,4\}$
c) $\{1,4\},\{2,3\}$
d) $\{1,2\},\{3\},\{4\}$

Part 2 Each problem is worth 4 points. Write complete solution.
5) Find the formula for the recursive sequence $S(n)=2 S(n-1)+15 S(n-2)$ given that $S(0)=1$ and $S(1)=3$.
6) Prove the formula for all integers $\mathrm{n} \geq 1$ using induction.

$$
1+8+64+\ldots+8^{n-1}=\frac{8^{n}-1}{7}
$$

7) Let $A=\{2,3,4,6,12\}$ and $R=\{(a, b) \mid b \bmod a=0\}$.
a) Draw the digraph of R.
b) Prove that R is a partial order relation.
c) Draw the Hasse diagram.
