PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

PART (I) Each problem is worth 2 points. Circle one answer.

1) Which proposition is equivalent to $\neg p \vee \neg q$?
a) $q \rightarrow p$
b) $p \rightarrow q$
c) $p \rightarrow \neg q$
d) $\neg \mathrm{q} \rightarrow \mathrm{p}$
2) $A=\{1,2,3,4,5\}$ and $B=\{2,4,6\}$ and $C=\{1,2,3\}$. Which set is $\{2,5,6\}$?
a) $(A-B) \oplus C$
b) $(C-B) \oplus A$
c) $(A-C) \oplus B$
d) $(B-A) \oplus C$
3) Which matrix represents an equivalence relation?
a) $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$
C) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$
4) Let $R=\{(1,4),(2,3),(3,1),(4,2)\}$. Which matrix represents R^{2} ?
a) $\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
c) $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$
d) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
5) How many non-negative integer solutions to $A+B+C+D=12$ with the conditions that $\mathrm{A} \geq 5$ and $\mathrm{B} \geq 3$?
a) 10
b) 20
c) 35
d) 56
6) How many permutations with A, B, C, D, E, F which do not contain "FED" ?
a) 96
b) 114
c) 600
d) 696
7) Which graph is an Euler circuit?
a) K 5
b) $\mathrm{K} 2,5$
c) $\mathrm{K} 3,4$
d) K 4
8) Which graph has adjacency matrix $\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right]$?
a) C 4
b) P 4
c) $\mathrm{K} 2,2$
d) $\mathrm{K} 1,3$
9) Convert the incidence matrix $\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$ to distance matrix.
a) $\left[\begin{array}{llll}0 & 2 & 1 & 1 \\ 2 & 0 & 1 & 3 \\ 1 & 1 & 0 & 2 \\ 1 & 3 & 2 & 0\end{array}\right]$
b) $\left[\begin{array}{llll}0 & 2 & 1 & 1 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 2 \\ 1 & 1 & 2 & 0\end{array}\right]$
c) $\left[\begin{array}{llll}0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0\end{array}\right]$
d) $\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 2 \\ 1 & 2 & 0 & 2 \\ 1 & 2 & 2 & 0\end{array}\right]$
10) Which graph has diameter 3 ?
a) K 5
b) C 7
c) $\mathrm{K} 4,3$
d) P5

PART (II) Each problem is worth 4 points. Write complete solutions.
11) Convert the proposition $(p \oplus q) \rightarrow r$ to $C N F$.
12) How many integers from 1 to 1000 are multiples of 8 or 28 ?
13) Evaluate GCD $(987,654)$.
14) Let $A=\{2,3,10,20,30\}$ and $R=\{(a, b) \mid b \bmod a=0\}$. Draw the Hasse diagram.
15) Solve the Chinese Postman Problem (CPP) for the graph below.

