PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Second Exam A

Part 1 Each problem is worth 2 points. Circle one answer.

1) How many permutations with A, B, B, B, C, C, C, C ?
a) 120
b) 168
c) 280
d) 720
2) How many permutations with $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ contain "ACE" and "BG" ?
a) 6
b) 24
c) 120
d) 720
3) How many non-negative integer solutions of the equation $x+y+z=10$ with condition $x \geq 3$?
a) 15
b) 21
c) 28
d) 36
4) Which formula gives the sequence $3,8,13,18,23,28, \ldots$?
a) $S_{n}=3 n+5$
b) $\mathrm{S}_{\mathrm{n}}=5 \mathrm{n}+3$
c) $S_{n}=n^{2}-1$
d) $\mathrm{S}_{\mathrm{n}}=\mathrm{n}^{2}+3$

Part 2 Each problem is worth 4 points. Write complete solution.
5) How many integers from 1 to 200 are multiples of 6 or 9 or 10 ?
6) Find the formula for the recursive sequence.

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}-1}+12 \mathrm{~S}_{\mathrm{n}-2} \\
& \mathrm{~S}_{0}=1 \\
& \mathrm{~S}_{1}=2
\end{aligned}
$$

7) Prove the formula for all integers $n \geq 1$.

$$
1+7+49+\ldots+7^{n-1}=7_{-}^{n}-1
$$

