

PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

First Exam A			DISCRETE STRUCTURES												-11-	-201 ′	1
Part 1	1 Each problem is worth 2 points. Circle one answer.																
1)	The proposition $\neg p \rightarrow q$ is equivalent to																
	a) p ∨ ·	¬q	b) ¬p ∨	′ q	c) p	$\vee q$		d) ¬r	ע כ	¬q						
2)	Which one is a contingency?																
	a) $\neg p \leftrightarrow \neg p$		b) $p \rightarrow p$		c) $\neg p \rightarrow p$			d	d) ¬p ⊕ ¬p								
3)	Let A = {1, 2, 3, 4, 5} and B = {1, 3, 5, 7, 9}. Then $ P(A \oplus B) $ =																
	a) 4		b) 8	c) 16			d	d) 32									
4)	The set (A – B) \oplus (A \cup B) =																
	a) B		b) A ⊕ B		c) A \cup B			d	d) A ∩ B								
5)	Let A = $\{1,2,3,4\}$ and R = $\{(x,y) x + y > 2\}$. Which one is true?																
	a) refle: c) anti-:	xive symme	etric		b) symmetric and transitived) symmetric only												
6)	Which relation is anti-symmetric?																
	a) $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$	0 1 0 0 0 0 1 0	$\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$ b)	$\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$	1 1 1 1	$\begin{bmatrix} 0\\0\\1\\1\end{bmatrix}$	c)	$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$	0 0 0 0	0 1 0 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$	d)	$\begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$	0 1 1 0	1 1 1 1	$\begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$	
Part 2	Each p	roblem	is worth	4 poir	nts. V	Vrite	con	nple	te s	olut	tion.						

7)Convert $(p \rightarrow r) \land q$ to DNF.8)Find the transitive closure of the given relation $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

-Amin Witno