PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

PART (I) Each problem is worth 3 points. Circle one answer.

1) Which proposition is a contingency?
a) $(\mathrm{p} \wedge \mathrm{q}) \rightarrow(\mathrm{p} \vee \mathrm{q})$
b) $(p \rightarrow q) \vee(p \vee \neg q)$
c) $(\mathrm{p} \vee \mathrm{q}) \rightarrow(\mathrm{p} \wedge \mathrm{q})$
d) $(p \rightarrow q) \wedge(p \wedge \neg q)$
2) Which function $f(n)$ gives the sequence $0,1,4,5,8,9, \ldots$?
a) $n-|n \div 2| \times 2$
b) $1+|n \div 2| \times 2$
c) $n+[n \div 2] \times 2$
d) $1+[n \div 2] \times n$
3) Given $A=\{1,2,3,4\}$ and $R=\{(a, b) \mid a \bmod b<2\}$. Then R is
a) reflexive (T); symmetric (F); anti-symmetric (F); transitive (F)
b) reflexive (F); symmetric (F); anti-symmetric (F); transitive (F)
c) reflexive (F); symmetric (F); anti-symmetric (T); transitive (T)
d) reflexive (T); symmetric (F); anti-symmetric (T); transitive (T)
4) Which equivalence relation has equivalence classes $\{1,2,5\}$ and $\{3,4\}$?
$\mathrm{a}\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1\end{array}\right] \mathrm{b}\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1\end{array}\right] \mathrm{c}\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1\end{array}\right] \mathrm{d}\left[\begin{array}{lllll}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right]$
5) Convert the Hasse diagram to matrix.

a) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right]$
d) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$
6) How many positive integers up to 100 are not multiples of 4 or 5 ?
a) 40
b) 43
c) 57
d) 60
7) Convert the incidence matrix $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$ to adjacency matrix.
a) $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
b) $\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right]$
c) $\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$
d) $\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
8) A complete graph has 153 edges. How many points does it have?
a) 16
b) 17
c) 18
d) 19
9) Which graph is an Euler circuit?
a) $\mathrm{K} 2,7$
b) K 7
c) $\mathrm{K} 5,5$
d) K 10
10) Which graph has the largest degree?
a) $\mathrm{K} 10,1$
b) $\mathrm{K} 5,6$
c) P 22
d) C 11

PART (II) Each problem is worth 5 points. Write complete solutions.
11) Convert the proposition $(p \oplus q) \rightarrow \neg r$ to a CNF.
12) Convert the decimal number 438 to binary and to octal.
13) How many permutations with the elements $\{A, B, D, E, M, N, O, R\}$ which have the word ROAD or MEN?
14) Draw the minimal spanning tree and find the total cost.

