

PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Second Exam A DISCRETE STRUCTURES 08–05–2011

Part 1- Each problem is worth 2 points. Circle one answer.

1) Given $R = \{(1,3), (2,1), (3,4), (4,3)\}$. Find R^3 .

a) {(1,4), (2,3), (3,4), (4,3)} b) {(1,3), (2,4), (3,4), (4,3)} c) {(1,4), (2,3), (3,2), (4,1)} d) {(1,2), (2,4), (3,1), (4,3)}

2) Which relation is an equivalence relation?

a)	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	0 1 0	1 0 1	0 1 0	b)	1 1 1	0 1 1	1 1 1	0 0 1	c)	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	0 0 1	1 1 0	$ \begin{array}{c} 0 \\ 0 \\ 1 \end{array} $	d)	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	0 1 1	1 1 1	1 0 1	
	$\begin{bmatrix} 1\\0 \end{bmatrix}$	0 1	1 0	$\begin{bmatrix} 0\\1 \end{bmatrix}$		$\begin{bmatrix} 1\\1 \end{bmatrix}$	1 0	1 1	1 1		$\begin{bmatrix} 1\\1 \end{bmatrix}$	1 0	0 1	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	·	$\begin{bmatrix} 1\\1 \end{bmatrix}$	1 0	1 1	1 1	

3) How many permutations with A, B, C, D, E which do **not** contain "BAD"?

a) 114 b) 96 c) 30 d) 24

4) Given |A| = 8. How many subsets have at least 6 elements?

a) 72 b) 56 c) 46 d) 37

Part 2- Each problem is worth 4 points. Write complete solution.

5) How many positive integers \leq 1000 are multiples of 16 or 20 or 25?

6) Find the matrix of the transitive closure, given the relation R = $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

7) Given A = $\{ 2, 4, 8, 12, 24 \}$ and R = $\{ (a,b) | b \mod a = 0 \}$.

a) Draw the digraph.

b) Prove that R is a partial order relation.

c) Draw the Hasse diagram.

-Amin Witno -Rahma Al-Daqa