PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

First Exam A

Part 1 Each problem is worth 2 points. Circle one answer.

1) Convert the proposition $p \leftrightarrow q$ to $C N F$.
a) $(\neg p \vee \neg q) \wedge(p \vee \neg q)$
b) $(\neg p \vee q) \wedge(p \vee q)$
c) $(\neg p \vee \neg q) \wedge(p \vee q)$
d) $(\neg p \vee q) \wedge(p \vee \neg q)$
2) Which proposition is a contingency?
a) $\neg p \leftrightarrow \neg p$
b) $p \rightarrow p$
c) $\neg p \rightarrow p$
d) $\neg p \oplus \neg p$
3) Convert the decimal number 2011 to hexadecimal.
a) 7 E 5
b) 7 DB
c) 7 D 5
d) 7 EB
4) Let $A=\{1,3,5,7\}$ and $B=\{3,5,6,8,9\}$. Then $|P(A \oplus B)|=$
a) 4
b) 8
c) 16
d) 32

Part 2 Each problem is worth 4 points. Write complete solution.
5) Evaluate GCD $(1081,437)$ and $\operatorname{LCM}(1081,437)$ by the Euclidean algorithm.
6) Find the function $f(n)$ given by the recurrence relation
$f(0)=3, f(1)=2, f(n)=f(n-1)+12 f(n-2)$
7) Is this argument valid? Prove it.

Premise 1: x is odd if and only if $3 x$ is odd.
Premise 2: $3 x$ is even.
Conclusion: x is even.

