

PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam A DISC		DISCR	RETE STRUCTURES		25–01–2011	
PART (I) Each problem is worth 2½ points. Circle one answer.						
1) The proposition $(p \land p) \rightarrow \neg p$ is a						
	a) tautology c) contingency		b) contrapositived) contradiction			
2)	2) Convert the hexadecimal number AE9 to decimal.					
	a) 2703 k	o) 2718 d	c) 2793	d) 2808		
3)	Which set is equal to $A \cap B$?					
	a) (A ⊕ B) ⊕ (A c) (A ⊕ B) ⊕ (A	4∪B) b \∩B) α	b) (A ⊕ B) ⊕ d) (A ⊕ B) ⊕	(A – B) (B – A)		
4)	How many permutations with A, B, C, D, E, F which do not contain "FACE" ?					
	a) 696 b	o) 714 d	c) 4920	d) 5016		
5)	If we have R = {(1,3), (2,1), (3,4), (4,1)} then $R^{-2} =$					
	a) {(1,3), (2,1), c) {(1,3), (3,2),	$(3,2), (3,4)\}$ the $(3,4), (4,1)\}$ of $(3,4), (4,1)\}$	b) {(1,2), (2,3 d) {(1,4), (3,1), (2,4), (4,1)}), (4,2), (4,3)}		
6)	The relation R give	n by its matrix	$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	0 1 0 1		
	a) equivalencec) partial order	relation k , not total c	b) total order d) not transiti	ve		
7)	Convert the given ir	ncidence matrix	$\mathbf{x} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	$ \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} $ to its adjacend	cy matrix.	

a) $\begin{bmatrix} 0 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix}$

8) Which graph has the least number of edges?

a) K9 b) K3,6 c) K1,9 d) K5,4

9) What is the value of the minimal spanning tree for this graph?

- 10) The Chinese Postman problem for the same graph (Problem 9) has minimum solution with a repetition of edges of total value
 - a) 10 b) 13 c) 14 d) 16

- 11) Let $A = \{2, 6, 7, 10, 11, 19\}$ and $R = \{(a,b) \mid a \mod 3 = b \mod 3\}$.
 - a) Find the elements of R and draw the digraph.
 - b) Prove that R is an equivalence relation and find the equivalence classes.
- 12) Evaluate GCD (906, 336) and LCM (906, 336).
- 13) How many positive integers up to 200 are multiples of 6 or 20?
- 14) Convert the proposition (p \lor q) $\rightarrow \neg$ r to a CNF.
- 15) Find the output using the algorithm (a) pre-order (b) post-order (c) in-order.

-Amin Witno