PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Second Exam A

Part 1 Each problem is worth 2 points. Circle one answer.

1) Given $R=\{(1,3),(2,3),(4,1),(4,2)\}$. Find $R \circ R^{-1}$
a) $\{(1,1),(2,2),(3,3),(4,4)\}$
b) $\{(1,1),(1,2),(2,1),(2,2),(3,3)\}$
c) $\{(1,2),(2,1),(3,3),(4,4)\}$
d) $\{(1,1),(1,3),(3,1),(3,3)\}$
2) Given $A=\{1,2,3,4\}$ and $R=\{(a, b) \mid a+b<6\}$. Which one is correct?
a) reflexive (T); symmetric (F); anti-symmetric (T); transitive (F)
b) reflexive (T); symmetric (F); anti-symmetric (T); transitive (T)
c) reflexive (F); symmetric (T); anti-symmetric (F); transitive (F)
d) reflexive (F); symmetric (T); anti-symmetric (F); transitive (T)
3) Given $A=\{1,2,3\}$ and $R=\{(a, b) \mid(a+b) \bmod 2=0\}$. Find the matrix.
a) $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
c) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$
4) Which relation is an equivalence relation?
a) $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$
5) How many permutations with A, B, C, D, E, F which do not contain "BAD"?
a) 714
b) 696
C) 120
d) 30
6) Given $|A|=8$. How many subsets have at least 6 elements?
a) 72
b) 56
c) 46
d) 37

Part 2 Each problem is worth 4 points. Write complete solution.
7) Given the matrix for a relation $R=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ Find the transitive closure.
8) Let $A=\{2,4,8,12,24\}$ and $R=\{(a, b) \mid b \bmod a=0\}$
a) Find the elements of R.
b) Draw the digraph.
c) Prove that R is a partial order relation.
d) Draw the Hasse diagram.

