PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam A

DISCRETE STRUCTURES
02-06-2010
PART (I) Each problem is worth $2 \frac{1}{2}$ points. Circle one answer.

1) Which proposition is equivalent to $p \rightarrow q$?
a) $p \vee \neg q$
b) $q \vee \neg p$
c) $p \vee q$
d) $\neg p \vee \neg q$
2) Convert the decimal number 2020 to hexadecimal.
a) 7 AE
b) 7D4
c) 7 E 4
d) 7 DA
3) If $A=\{1,2,3,4,5\}$ and $B=\{2,4,6\}$ then $|P(A \oplus B)|=$
a) 8
b) 16
c) 32
d) 64
4) If $|\mathrm{A}|=8$, how many subsets have at least 6 elements?
a) 37
b) 46
c) 61
d) 67
5) Which equivalence relation has equivalence classes $\{1,3,4\}$ and $\{2,5\}$?
$\mathrm{a}\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1\end{array}\right] \mathrm{b}\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1\end{array}\right] \mathrm{c}\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1\end{array}\right] \mathrm{d}\left[\begin{array}{lllll}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right]$
6) $A=\{4,8,12,24\}$ and $R=\{(a, b) \mid a \bmod b=0\} \subseteq A \times A$. The Hasse diagram is
a)

b)

c)

d)

7) The degree matrix $\left[\begin{array}{llll}0 & 2 & 1 & 1 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 2 \\ 1 & 1 & 2 & 0\end{array}\right]$ represents which graph?
a) K 4
b) K 2,2
c) K 1,3
d) P4
8) Which graph has the largest diameter?
a) K 10
b) K 6,6
c) P 6
d) C 10
9) Convert the incidence matrix $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$ to adjacency matrix.
а) $\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right]$
b) $\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
c) $\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$
d) $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
10) Find the minimal spanning tree. The total value is
a) 21
b) 22
c) 25
d) 23

PART (II) Each problem is worth 5 points. Write complete solutions.
11) Convert the proposition $(p \leftrightarrow q) \rightarrow r$ to a $C N F$.
12) Evaluate $\operatorname{GCD}(2010,602)$.
13) How many different permutations from the set $\{A, C, E, N, R, S, T\}$ which contain the word TEN or CAR ?
14) Find the matrix of the transitive closure of the relation given by $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0\end{array}\right]$
15) Solve the Chinese postman problem for this graph.

