PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam A

DISCRETE STRUCTURES
02-06-2009

PART (I) Each problem is worth 2122 points. Circle one answer.

1) Which proposition is a contradiction?
a) $p \rightarrow \neg p$
b) $p \vee \neg p$
c) $p \oplus \neg p$
d) $p \wedge \neg p$
2) Convert the octal number 1216 to hexadecimal.
a) 28 E
b) 29 E
c) 2 AE
d) 2 BE
3) Evaluate $\operatorname{LCM}(133,91)$.
a) 1309
b) 1463
c) 1547
d) 1729
4) There are 6 chapters in the Discrete Structures notes. How many questions minimum so that at least 9 questions in the Exam come from the same chapter?
a) 49
b) 55
c) 61
d) 67
5) Let $A=\{1,2,3,4\}$ and $R=\{(a, b) \mid a+b>2\}$. Then R is
a) symmetric (T), transitive (T)
b) symmetric (T), transitive (F)
c) symmetric (F), transitive (T)
d) symmetric (F), transitive (F)
6) Let $A=\{1,2,3\}$ and $R=\{(1,2),(2,3),(3,1)\}$. Find the transitive closure.
a) $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
7) Which graph has the smallest degree?
a) K10,4
b) K10
c) $\mathrm{K} 7,7$
d) $\mathrm{K} 5,9$
8) The adjacency matrix $\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$ represents which graph?
a) K2,2
b) K4
c) $\mathrm{K} 3,1$
d) $\mathrm{K} 4,3$
9) Which incidence matrix represents a tree?
a) $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
b) $\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
c) $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
d) $\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
10) Find the minimal spanning tree. The total value is
a) 21
b) 22
c) 25
d) 23

PART (II) Each problem is worth 5 points. Write complete solutions.
11) Convert the proposition ($p \vee q$) $\rightarrow r$ to a CNF.
12) Prove: If $x^{2}-2 x+3$ is odd then x is even.
13) How many non-negative integer solutions of $x+y+z=10$ such that $x \geq 5$ or $\mathrm{y} \geq 3$?
14) Give one example of a relation R on $A=\{1,2,3,4\}$ for each (a) and (b).
(a) reflexive (T); symmetric (T); anti-symmetric (F); transitive (F)
(b) reflexive (F); symmetric (T); anti-symmetric (F); transitive (T)
15) Let $A=\{1,6,8,11,12,18\}$ and $R=\{(a, b) \mid a \bmod 3=b \bmod 3\}$
a) Find the elements of R.
b) Draw the graph.
c) Prove that R is an equivalence relation.
d) Find the equivalence classes.

