

PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam A D

DISCRETE STRUCTURES

02-06-2009

PART (I) Each problem is worth 2¹/₂ points. Circle one answer.

1) Which proposition is a contradiction?

a) $p \rightarrow \neg p$ b) $p \lor \neg p$ c) $p \oplus \neg p$ d) $p \land \neg p$

2) Convert the octal number 1216 to hexadecimal.

a) 28E b) 29E c) 2AE d) 2BE

- 3) Evaluate LCM (133, 91).
 - a) 1309 b) 1463 c) 1547 d) 1729
- 4) There are 6 chapters in the Discrete Structures notes. How many questions minimum so that at least 9 questions in the Exam come from the same chapter?

a) 49 b) 55 c) 61 d) 67

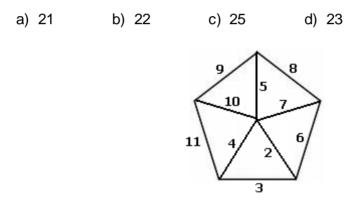
5) Let $A = \{1, 2, 3, 4\}$ and $R = \{(a,b) | a + b > 2\}$. Then R is

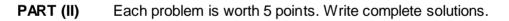
a) symmetric (T), transitive (T)	b) symmetric (T), transitive (F)
c) symmetric (F), transitive (T)	d) symmetric (F), transitive (F)

6) Let A = $\{1, 2, 3\}$ and R = $\{(1,2), (2,3), (3,1)\}$. Find the transitive closure.

	0	0	1		1	1	1		0	1	1]		1	0	0
a)	1	0	0	b)	1	1	1	c)	1	0	1	d)	0	1	0
	0	1	0		1	1	1		[1	1	0		0	0	1

7) Which graph has the smallest degree?


a) K10,4 b) K10 c) K7,7 d) K5,9
8) The adjacency matrix
$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
 represents which graph?
a) K2,2 b) K4 c) K3,1 d) K4,3



9) Which incidence matrix represents a tree?

a)
$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
b)
$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
c)
$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
d)
$$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

10) Find the minimal spanning tree. The total value is

- 11) Convert the proposition ($p \lor q$) $\rightarrow r$ to a CNF.
- 12) Prove: If $x^2 2x + 3$ is odd then x is even.
- 13) How many non-negative integer solutions of x + y + z = 10 such that $x \ge 5$ or $y \ge 3$?
- 14) Give one example of a relation R on $A = \{1,2,3,4\}$ for each (a) and (b).
 - (a) reflexive (T); symmetric (T); anti-symmetric (F); transitive (F)
 - (b) reflexive (F); symmetric (T); anti-symmetric (F); transitive (T)
- 15) Let $A = \{1, 6, 8, 11, 12, 18\}$ and $R = \{(a,b) \mid a \mod 3 = b \mod 3\}$
 - a) Find the elements of R.
 - b) Draw the graph.
 - c) Prove that R is an equivalence relation.
 - d) Find the equivalence classes.