

PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Second Exam A DISCRETE STRUCTURES

06-05-2009

Part 1 Each problem is worth 2 points. Circle one answer.

- 1) Let $A = \{2,3,5,7\}$ and $R = \{(a,b) | a + b = odd\}$. Which property is true? a) reflexive b) symmetric c) transitive d) all these are true
- 2) Which matrix represents an equivalence relation?

a)	1 0	1 1	0 1	$1 \\ 0$	b)	$\begin{bmatrix} 0\\1 \end{bmatrix}$	1 0	1 1	1 1	c)	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 1	0 0	0 1	d)	1 0	0 1	0 1	$1\\0$
	1 0	0 1	1 0	1 1	D)	1 1	1 1	0 1	1 0		0 0	0 1	1 1	1 1	u)	0 1	1 0	1 0	0 1

- 3) Let $R = \{(1,2), (2,3), (2,4), (3,1), (4,1)\}$. Find R^2 . a) $\{(1,3), (2,1), (3,2), (4,2), (4,3)\}$ b) $\{(1,3), (1,4), (2,1), (3,2), (4,2)\}$ c) $\{(1,2), (2,3), (2,4), (3,1), (4,1)\}$ d) $\{(1,3), (2,4), (2,3), (3,1), (4,2)\}$
- 4) A complete graph has 91 edges. How many points does it have? a) 16 b) 24 c) 14 d) 20

5)	Which graph is an Euler circuit?																			
	a) I	K4	-		b) K2,5 c			c) K) K7) ł	< 3,3	3						
									1	1	0	0	1	0						
6)	Convert the incidence matrix								0	0	1	1	0	0	to adjacency matrix					rix.
									0	1	1	1	0	1						
		2	0	1]		2	0	2]	-	2	1	1]	-	2	1	1			
	a)	0	0	2	b)	0	0	1	c)	1	0	2		d)	1	1	1			
		1	2	1		2	1	1		1	2	0			1	1	0			

- Part 2 Each problem is worth 4 points. Write complete solution.
- 7) Let A = $\{3, 6, 12, 18, 36\}$ and R = $\{(a, b) | b \mod a = 0\} \subseteq A \times A$. Find the elements of R and draw the Hasse diagram.
- 8) Find the output using the algorithm (a) pre-order (b) post-order (c) in-order.

