PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

## Final Exam A

DISCRETE STRUCTURES
21-01-2009
PART (I) Each problem is worth $21 / 2$ points. Circle one answer.

1) Find a proposition equivalent to $\neg p \rightarrow(p \vee q)$.
a) $p \rightarrow q$
b) $q \rightarrow p$
c) $p \rightarrow \neg q$
d) $\neg \mathrm{p} \rightarrow \mathrm{q}$
2) Evaluate GCD (2009, 9200).
a) 1
b) 2
c) 7
d) other answer
3) How many positive integers $\leq 100$ are multiples of 8 or 12 ?
a) 12
b) 13
c) 15
d) 16
4) Let $A=\{1,2,3,4\}$ and $R=\{(a, b) \mid a+b>1\}$. Then $R$ is
a) symmetric (T), transitive (T)
b) symmetric (T), transitive ( F )
c) symmetric ( F ), transitive $(\mathrm{T})$
d) symmetric ( F ), transitive ( F )
5) Which equivalence relation has equivalence classes $\{1,2,5\}$ and $\{3,4\}$ ?
$\mathrm{a}\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1\end{array}\right] \mathrm{b}\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1\end{array}\right] \mathrm{c}\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1\end{array}\right] \mathrm{d}\left[\begin{array}{lllll}1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right]$
6) Convert the incidence matrix $\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$ to adjacency matrix.
a) $\left[\begin{array}{llll}0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
b) $\left[\begin{array}{llll}0 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
c) $\left[\begin{array}{llll}0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right]$
d) $\left[\begin{array}{llll}0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$
7) A complete graph has 91 edges. How many points does it have?
a) 14
b) 15
c) 16
d) 17
8) Which graph is an Euler path (not Euler circuit)?
a) K 5
b) K 6
c) $\mathrm{K} 5,2$
d) $\mathrm{K} 5,4$
9) Find the minimal spanning tree. The total value is

a) 36
b) 39
c) 41
d) 43
10) Find the dual graph of K4.
a) K 1
b) K 2
c) K 3
d) $\mathrm{K} 1,2$

PART (II) Each problem is worth 5 points. Write complete solutions.
11) Prove: If $x^{2}-10 x+3$ is odd then $x$ is even.
12) Find an explicit formula for the recurrence relation given by

$$
\begin{aligned}
& f(0)=1 \\
& f(1)=2 \\
& f(n)=2 f(n-1)+3 f(n-2)
\end{aligned}
$$

13) Give one example of a relation $R$ on $A=\{1,2,3,4\}$ for each (a) and (b).
(a) reflexive (T); symmetric (T); anti-symmetric (F); transitive (F)
(b) reflexive (F); symmetric (T); anti-symmetric (F); transitive (T)
14) Let $A=\{2,3,6,8,24\}$ and $R=\{(a, b) \mid b \bmod a=0\}$. Draw the Hasse diagram.
15) Find the output using the algorithm (a) pre-order (b) post-order (c) in-order.

