PHILADELPHIA UNIVERSITY DEPARTMENT OF BASIC SCIENCES

Final Exam A

DISCRETE STRUCTURES
15-06-2008
PART (I) Each problem is worth $21 / 2$ points. Circle one answer.

1) Which proposition is a contradiction?
a) $(p \oplus q) \leftrightarrow(\neg p \oplus \neg q)$
b) $(p \oplus \neg q) \leftrightarrow(\neg p \oplus q)$
c) $(p \oplus q) \leftrightarrow(p \oplus q)$
d) $(\neg p \oplus \neg q) \leftrightarrow(p \oplus \neg q)$
2) The number 1969 is decimal. Convert it to hexadecimal.
a) 7B1
b) 1 C 1
c) 7 CC
d) 1 BB
3) The set $(A \cup B) \oplus(A \cap B)$ equals
a) $\mathrm{A}-\mathrm{B}$
b) A
c) $A \cup B$
d) $A \oplus B$
4) How many permutations can be formed using the letters $\{A, B, A, C, A, B, A\}$?
a) 105
b) 35
c) 315
d) 70
5) Let $A=\{1,2,3,4\}$ and $R=\{(a, b) \mid a-b \leq 1\}$. Which is correct about R ?
a) anti-symmetric is false, transitive is true
b) symmetric is false, anti-symmetric is false
c) R is an equivalence relation
d) R is a total order
$6)$ The transitive closure of the relation $\{(1,1),(2,3),(2,4),(4,2)\}$ is given by
a) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0\end{array}\right]$
b) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1\end{array}\right]$
C) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}\right]$
d) $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$
6) A complete graph has 78 edges. How many points does it have?
a) 13
b) 24
c) 14
d) 28
7) Which graph is an Euler circuit?
a) K 4
b) $\mathrm{K} 2,5$
c) K 9
d) $\mathrm{K} 3,3$
8) Convert the incidence matrix $\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0\end{array}\right]$ to adjacency matrix.
a) $\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 0 & 2 \\ 1 & 2 & 1\end{array}\right]$
b) $\left[\begin{array}{lll}2 & 0 & 2 \\ 0 & 0 & 1 \\ 2 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$
d) $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$
9) Find the output using the in-order algorithm.

a) B-D-F-A-H-E-C
b) F-D-B-A-C-E-H
c) B-F-D-A-C-E-H
d) B-F-D-A-H-E-C

PART (II) Each problem is worth 5 points. Write complete solutions.
11) Evaluate GCD $(282,174)$ using the Euclidean algorithm.
12) Prove: If $x^{2}-10 x+3$ is odd then x is even.
13) Find an explicit formula for the recurrence relation given by

$$
\begin{aligned}
& f(0)=1 \\
& f(1)=2 \\
& f(n)=2 f(n-1)+3 f(n-2)
\end{aligned}
$$

14) How many positive integers ≤ 1000 which are not multiples of 25 or 60 ?
15) Draw a minimum spanning tree and find the sum.

